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In this work we study the properties of Nf = 2+ 1 QCD in the presence of a constant background
magnetic field, up to unexplored large values of |e|B, by means of lattice Monte Carlo simulations.
We investigate the string tension and its asymmetry via the study of the static quark-antiquark
potential and of the color flux tube. Moreover, we present preliminary results regarding QCD at
finite temperatures in this regime.
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1. Introduction

The study of QCD in a magnetic field provided, along the years, new insights on the strong
interacting matter. The discovery of new phenomena of strong interactions in such conditions might
be of great phenomenological interest, because it is common to different research fields: from the
cosmology of the Primordial Universe, to the non-central ion scattering experiments. Beside that,
the effects on the QCD vacuum properties is of undeniable interest also from a purely theoretical
point of view: a magnetic field is able to affect the pure gauge sector despite gluons cannot directly
interact with it. This could suggest a stronger impact of the magnetic field on the phase structure
of the QCD. Recent studies pointed out some interesting properties of the theory in the presence
of a very strong external magnetic field. It has been shown that the interactions between a quark
antiquark pair are asymmetric in a magnetic background [1–4]. This fact could eventually result in
an anisotropic deconfinement when |e|B & 4 GeV2 [3]. Moreover it has been shown that, in such
conditions, the critical temperature of the chiral restoration drops [5–8], and, for high intensities of
the background field, the phase transition is expected to become first order [6, 9].

In this workwe explore the properties of the Nf = 2+1QCD, at the physical point for intensities
of |e|B = 4 GeV2 and |e|B = 9 GeV2, in order to get direct information about the strong field regime.
Fields as strong as these require an accurate tuning of the UV cut-off, which have to be large enough
to prevent harmful systematic errors due to discretization. Such a necessity translates into very
high computational effort. We performed our measures at both vanishing and finite temperatures,
in order to infer information on both the statical potential of a quark-antiquark pair and on the phase
diagram. For all measurement we chose a fixed beta prescription, varying, in order to get different
magnetic fields and temperature, respectively the number of quanta of magnetic field (see later)
and the compact Euclidean time extent. This prescription allowed us to directly perform continuum
limits for observables measured at different lattice spacing with identical physical parameters.

The paper is organized as follows: in Section 2 we outline the setup used for the calculations; in
Section 3 we present our results at zero and finite temperature; in Section 4 we draw our conclusions.

2. Numerical Methods

We simulated Nf = 2 + 1 QCD by means of the tree-level improved Symanzik action in the
gauge sector

S = −
β

3

∑
µ,ν

∑
i

(
5
6

W1×1
i,µν −

1
12

W1×2
i,µν

)
(1)

where W1×1 are the plaquettes W1×2 are the rectangles with area 1 × 2, and stout improved root
staggered fermions in the quark sector

D f
i j = am f δi, j +

∑
ν

ηi;ν

2

(
U(2)i;ν δi, j−ν̂ −U(2)†

i−ν̂;νδi, j+ν̂

)
(2)

where U(2) are the two times stout smeared gauge links. In Eqs. (1) and (2) the constants β and
m f are the input parameters of the simulation, which have been chosen in order to lay on a line of
constant physics, according to the results obtained in [10–12]; a is the lattice spacing and ηi;ν are
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the staggered phases. The constant background magnetic field B has been inserted along the spatial
z-direction, applying the following substitution to the link variables in the fermionic sector

U(2)j;µ → u f
j;µU(2)j;µ , (3)

where u f
i;µ are U(1) phases defined as follows

u f
j;y = eia

2q f Bjx , u f
j;x

��
jx=Lx

= e−ia
2q f LxBjx , (4)

where Lx is the number of lattice points in the x-direction, and all the other U(1) links are set to
1. The right hand side (RHS) of Eq. (4) guarantees the smoothness of the magnetic field across
the boundaries [13]. Finally, again because of the periodic boundaries, the magnetic field has to be
quantized

eB =
6πbz

a2LxLy
, bz ∈ Z. (5)

To study the confining potential between a static quark-antiquark pair, we used the Wilson loop
(W), exploiting the relation [3, 14]

aV(a®n) = lim
nt→∞

log
(
〈TrW(a®n, ant )〉

〈TrW(a®n, a(nt + 1))〉

)
, (6)

where aV is the potential in lattice units and the limit in RHS is practically taken searching for a
stable plateau region in the log function for high values of nt . To determine themicroscopic structure
of the confining field, we relied on a Wilson loop operator connected to a plaquette probing the
longitudinal chromoelectric field

ρ
µt
conn(anµ, ant, xt ) =

3
〈
Tr

(
W(anµ, ant )LPµt (xt )L†

)〉
−

〈
Tr

(
W(anµ, ant )TrPµt (xt )

)〉
3 〈Tr(W)〉

, (7)

where Pµt is the plaquette in the µt-plane, L the shortest Shwinger path connecting the plaquette
with theWilson loop at the center of its temporal side, while xt is the distance between the plaquette
and the Wilson loop along one of the directions orthogonal to µ. To get further details on this
operator, we refer the reader to [14–16].

To study the chiral symmetry restoration and deconfinement transition, we made use of two
fermionic observables, namely the chiral condensate and the quark number susceptibility, defined
on the lattice, respectively, as follows

Σ f =
T
V
∂ log Z
∂m f

, (8)

χq =
T

m2
πV

(
∂2 log Z
∂µ2

q

)
µq=0

, (9)

where Z is the partition function, µq the chemical potential relative to the quark q and mπ is the
pion mass. It is worth to note that the observable in Eq. (8) needs for a renormalization to remove
additive and multiplicative divergences, thus we used the renormalization defined in [5]

Σ
r
f =

m f

C
(
Σ f (T, B) − Σ f (0, 0)

)
, (10)

where C is a normalization constant with the dimensions of a mass to the 4th power. On the
other hand, Eq. (9) does not need any renormalization because the quark number susceptibility is
connected to a conserved current.
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Figure 1: Continuum limits of the chiral condensate in the two simulated background magnetic fields (red
circles) compared with data from [17]. The linear extrapolation band put lights on the striking agreement of
the new measures with the LLL approximation prediction.

3. Results

Let us start from the magnetic catalysis analysis. In Figure 1 we show the continuum ex-
trapolated chiral condensate measures at vanishing temperature. Here, for the sake of clarity, the
results are reported with the renormalization defined in [17] which amounts to set C = m2

πF2 in
Eq. (10), where F2 is the chiral limit of the pion decay constant. The linear behavior of the chiral
condensate for large magnetic fields can be theoretically predicted using the Lowest Landau Level
(LLL) approximation: the degeneracy of the LLL linearly increases with |e|B, and, because of
the Banks–Casher relation, it is proportional to the chiral condensate and hence it is linear in |e|B
as well1. This result, because of the a4 dependence of the renormalization group invariant chiral
condensate, supports, at the same time, the assumption that the lattice spacing is independent on
the magnetic field, an assumption which was directly checked in [5] only for magnetic fields much
weaker than those used in this work.

In Figure 2a it is shown the static quark-antiquark potential computed for a lattice spacing
0.0572 fm making use of Eq. (6), which confirms the predictions about the asymmetries caused by
the magnetic field [3]: the attractive potential in the longitudinal direction is heavily suppressed,
while, on the orthogonal plane, it is slightly enhanced. Such asymmetry is also found in Figure 2b,
where we show the values of the string tension σ, obtained through the fit of the Cornell potential

V(r) = −
α

r
+ σx + V0 (11)

on the data plotted in Figure 2a. A deconfined theory would exhibit a null string tension, hence the
quarks of a pair could be spaced apart up to infinite distance using a finite amount of energy. Such
a picture, which seemed possible for magnetic fields stronger than |e|B ' 4 GeV2, according to the

1This holds for magnetic fields large enough to decouple states with higher energy levels, whose energy is ∝
√
|e|B.
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Figure 2: (a) The static potential between a quark-antiquark pair is heavily affected by a strong magnetic field
in the longitudinal direction (L), while on the transverse plane it seems to be only moderately enhanced (T).
(b) The enhancement effect of the string tension on the plane orthogonal to themagnetic field seems to saturate
in the strong magnetic field region explored, while, in the longitudinal direction, it is strongly suppressed, up
to an order of magnitude in the 9 GeV2 case. Nevertheless, the anisotropic deconfinement suggested from
the extrapolation performed in [3] is not confirmed by our measures up to, at least, |e|B = 9 GeV2.

extrapolations reported in Ref. [3], is not confirmed, not even for |e|B = 9 GeV2, where the sigma
tension is around 2 standard deviations apart from 0.

The same picture of the effects of the magnetic field on the confining potential along the
longitudinal direction can be found looking at Figure 3a: it represents the QCD flux tube profile,
obtained as

El(d, xt ) =
1

a2g0
ρ
µt
conn(d, xt ), (12)

where ρµtconn(d, xt ) is the lattice observable defined in Eq. (7) with anµ = ant = d. The chromoelec-
tric field intensity, computed in the direction longitudinal to themagnetic field, is clearly suppressed.
Such an effect is stronger as the magnetic field intensity rises as already pointed out in a weaker
field regime [15]. Despite the chromoelectric field is heavily affected from the magnetic field in
its intensity, its shape, as function of xt , appears to be preserved. Relying on this observation,
we employed a parameterization based on the form of magnetic fields inside vortices in type II
superconductors [18] called Clem ansatz, which well fits numerical results, as shown by the dashed
lines in Figure 3a. Clem ansatz allows us to compute the linear energy density,

ε(d) =
1
2

∫
d2xtEl(d, xt ), (13)

avoiding the numerical noisy integration. Indeed it is possible to exploit the parameterization in
order to compute ε as a function of the fit parameters (we refer the reader to [14] and [15] for further
details). In Figure 3b we show the continuum extrapolations of the linear density energies for the
4 and 9 GeV2 magnetic fields compared to the string tensions in the longitudinal direction. We
find them compatible within the errors, meaning that the flux tube and the Cornell potential ansatzs
are still in good agreement, up to the strongest magnetic field studied. Such a picture is in good
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Figure 3: (a) Effects of the magnetic fields on the QCD flux tube in the longitudinal direction. Measures
are performed on a a = 0.0572 fm lattice, with a quark-antiquark separation d = 0.68 fm. The confining
chromoelectric field profile is suppressed by the presence of the magnetic field. Despite that, the Clem ansatz
is still a good fitting approximation. (b) Clem ansatz is confirmed as a good model for the chromoelectric
confining field even at magnetic fields as strong as |e|B = 9 GeV2: the linear energy density computed using
this approximation is compatible with the string tension within errors.

agreement with the claim that the magnetic field does not cause anisotropic deconfinement up to
|e|B = 9 GeV2 intensities.

We now turn to a brief description of our finite T results. To perform simulations at different
temperatures, as anticipated, we used a fixed scale prescription, varying the compact Euclidean
time extent Lt of the lattice in order to simulate different temperatures according to the relation

T =
1

aLt
, with kB = 1. (14)

To extract the transition temperature, we measured, for every simulated temperature, the quark
number susceptibility and the chiral condensate, defined, respectively, in Eqs. (9) and (10), setting,
in the latter, C = m4

π . In Figure 4a we report the measures at the finest lattice spacing. The transition
temperature is taken as the abscissa of the inflection points of the profiles in temperature, which
are obtained fitting a suitable function on the numerical data. The shaded region in Figure 4a is the
resulting estimate of the transition temperature. The systematic error is evaluated comparing the
result for Tc using different fitting functions. In Figure 4b we compare our continuum extrapolated
transition temperatures with the large |e|B extrapolation performed in [6]: with respect to that
predictionwe find a deconfinement transition temperature slightly lower but nevertheless compatible
within the errors.

The accordance between transition temperatures computed via the chiral condensate and the
quark number susceptibility is a signal that the transition is moving toward a real phase transition,
a natural extension of our study is then to deduce the transition nature. A first order transition
is characterized by a discontinuous change in the order parameters as the temperature crosses its
critical value. This is not to the situation pictured in Figure 4a, which shows a smooth change of
the order parameters across the transition, even if the probed temperature are discretely spaced at

6
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Figure 4: (a) The critical temperatures are obtained for different order parameters by means of a fitting
procedure on their temperature profile with an inflecting curve. These values happens to coincide within
the errors. (b) Continuum extrapolated critical temperatures for both chiral condensate and baryon quark
number susceptibility, compared with extrapolation from [6]: our results are comparable within errors.

intermediate temperatures. A more comprehensive study about these aspects has been reported
recently in Ref [19], where results at |e|B = 9 GeV2 are included, showing that indeed the transition
is first order in that case.

4. Conclusions

To resume, we explored the QCD properties in the presence of two strong backgroundmagnetic
fields, namely: |e|B = 4 and 9 GeV2 at both vanishing and finite temperature. For what concerns
the former case, we found the expected significant influence of the magnetic background on the
confinement properties, but the picture of an anisotropic deconfinement is not confirmed even for
magnetic fields up to |e|B = 9 GeV2 [14]. In the finite temperature regime our measurements
confirm the influence of the external field on the phase diagram as a lowering in the critical
temperature which is of the same entity as that predicted in [6] for the |e|B = 4 GeV2 background.
For complete results in this regime we refer the reader to [19], where a deep exploratory study of
the magnetic field effect on the QCD phase diagram has been reported.
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