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1. Introduction

Following the seminal work in Ref. [1], there has been increasing interest in understanding the
structure of nucleons from first-principle simulations of lattice QCD. Parton Distribution Functions
(PDFs) are defined starting from the Fourier transform of a fermion bilinear along the light-cone,

𝑓 (𝑥) =
∫

𝑑b−

4𝜋
𝑒−𝑖𝑥𝑃

+ b− 〈𝑃 |𝜓(b−)𝛾+𝑈 (b−, 0) 𝜓(0) |𝑃〉 , (1)

where |𝑃〉 denotes a hadronic state with momentum 𝑃` = (𝑃0, 0, 0, 𝑃𝑧) and 𝑈 (b−, 0) is a Wilson
line connecting b− to the origin, which ensures the gauge invariance of the bilocal operator. We use
light-cone coordinates, so that 𝑃+ = 𝑃0+𝑃𝑧

2 , b− =
b 0−b 𝑧

2 and 𝛾+ is defined in an analogous manner.
The physical PDF is obtained from Eq. (1) after the operator is properly renormalized. As usual
the renormalization programme requires that a particular scheme is specified and it has become
conventional to use PDFs defined in the MS for phenomenology. We will discuss the issues related
to the renormalization of the bilinears in detail below in the context of the scalar toy model.

Lattice QCD relies on the Euclidean formulation of field theories and therefore does not allow
us to access the values of the correlators above along the light-cone. Following the prescription in
Ref. [1], the observables that are obtained by Monte Carlo simulations are computed at space-like
separations. In this talk we will review the definition of quasi-PDFs [1] and pseudo-PDFs [2], the
Euclidean observables computed in lattice QCD, their renormalization and their relation to PDFs.
Following early work by Collins [3], we are going to study these issues at one-loop in perturbation
theory in scalar field theory, where all the relevant features can be studied while avoiding the
complications of computing in QCD. The toy model allows us to highlight the important points
without being bogged down in the technical details. The results summarised in this talk have been
presented in Ref. [4], while we refer to the review talk at this Conference [5] and references therein.

In the scalar field theory the PDFs are defined starting from the matrix element of a two-point
correlator between ’hadronic’ states,

M
(
a, 𝑧2

)
= 〈𝑃 |𝜙(𝑧)𝜙(0) |𝑃〉 , (2)

where the hadronic state with momentum 𝑃 is denoted by |𝑃〉, and 𝑧 is a space-time coordinate
in Minkowski space. Note that because of the invariance under Lorentz transformations of the
continuum theory, the matrix element can only depend on the Lorentz-invariant variables a =

𝑝 · 𝑧, which is usually referred to as ’Ioffe time’, and 𝑧2. The Ioffe-time distribution and pseudo
distributions are obtained by computing the matrix element in Eq. (2) along the light-cone, choosing
e.g. 𝑧` = (0, 𝑧−, 0⊥), and a spatial direction, 𝑧` = (0, 0, 0, 𝑧3), respectively. 1 Taking the Fourier
transform along a light-cone direction yields the light-cone PDFs, as in the QCD case shown in
Eq. (1),

𝑓 (𝑥) =
∫

𝑑𝑧−

4𝜋
𝑒−𝑖𝑥𝑃

+𝑧− 〈𝑃 |𝜙(𝑧−)𝜓(0) |𝑃〉 . (3)

Note that in the scalar theory there is no need for the Wilson line and there is no spin structure,
which simplifies the perturbative calculation while retaining all the important ingredients. Finally,

1Note that we have used light-code coordinates to specify 𝑧 in the first case, while using the usual Cartesian axes for
the second one.
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the quasi-PDFs are defined by taking the Fourier transform along one spatial direction,

𝑞(𝑥) =
∫

𝑑𝑧3

4𝜋
𝑒−𝑖𝑥𝑃

3𝑧3 〈𝑃 |𝜙(𝑧3)𝜓(0) |𝑃〉 . (4)

The main purpose of this note is to elucidate the relations between these different quantities.

2. Renormalization

As discussed above, the basic building block is the matrix element

M̂
(
a, 𝑧2

)
= 〈𝑝 |𝜙(𝑧)𝜙(0) |𝑝〉 . (5)

For the perturbative calculation we consider the partonic matrix element, denoted by the ‘hat’, and
computed between one-particle partonic states |𝑝〉, The tree-level and one-loop contributions are
shown in Fig. (1).

Figure 1: Tree-level, (a), and one-loop, (b) and (c), contributions to the partonic matrix element.

The tree-level contribution is readily evaluated to yield

M̂ (0) = exp (−𝑖a) . (6)

The one-loop contributions can be expressed in terms of M̂ (0) :

M̂𝑏

(
a, 𝑧2

)
=
𝛼

6

(
1
𝜖
+ log

𝑚2

`2 + 𝑏
)
M̂ (0) (a, 0) , (7)

M̂𝑐

(
a, 𝑧2

)
∝

∫ 1

0
𝑑b (1 − b) 𝐾 (𝑧2, 𝑀2) M̂ (0) (ba, 0) , (8)

𝐾 (𝑧2, 𝑀2) = 1
(4𝜋)𝐷/2

∫ ∞

0

𝑑𝑇

𝑇
𝑇3−𝐷/2𝑒−𝑇 𝑀 2

𝑒−𝑧
2
𝐸
/(4𝑇 ) , (9)

𝑧2𝐸 = −𝑧2 , 𝑀2 = 𝑚2
(
1 − b + b2

)
. (10)

The contribution from M̂𝑏 is the usual multiplicative renormalization of the field 𝜙.
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On the light-cone More interestingly, M̂𝑐 has a divergent kernel 𝐾 (0, 𝑀2) on the light-cone. It
is clear from the explicit expression in Eq. (8) that M̂

(
a, 𝑧2

)
is renormalized by convolution with a

kernel. Specifically, in the MS scheme,

M̂𝑅

(
a, `2

)
=

∫ 1

0
𝑑𝑦K𝑅 (𝑦) M̂ (𝑦a, 0) , (11)

with the renormalization kernel:

K𝑅 (𝑦) =
[
1 − 𝛼

6
1
𝜖

]
𝛿 (1 − 𝑦) − 𝛼 1

𝜖
(1 − 𝑦) . (12)

The renormalized light-cone matrix element can be written as

M̂𝑅

(
a; `2

)
=

[
1 + 𝛼

6

(
log

𝑚2

`2 + 𝑏
)]

M̂ (0) (a, 0)

+ 𝛼
∫ 1

0
𝑑𝑥 (1 − 𝑥) log

`2

𝑚2 (
1 − 𝑥 + 𝑥2) M̂ (0) (𝑥a, 0) . (13)

Note that the expression is finite and depends on the scale `2 that appears naturally in the process
of renormalizing the matrix element. We have therefore added an explicit dependence on `2 in
the arguments of M̂𝑅. At the same time we have also removed the dependence on 𝑧2 since this is
constant and equal to zero on the light-cone.

Spatial separation The case where 𝑧 is a space-like vector is simpler, since the non-vanishing
value of 𝑧2 provides a regulator for the kernel in Eq. (9), which becomes a Bessel function:

𝐾

(
−𝑧23, 𝑀

2
)
=

1
(4𝜋)3

∫ ∞

0

𝑑𝑇

𝑇
𝑒−𝑇 𝑀 2

𝑒−
𝑧2
3

4𝑇 =
1

(4𝜋)3 2𝐾0 (𝑀𝑧3) , (14)

so that the renormalized space-like correlator is given by

M̂𝑅

(
a, 𝑧23; `2

)
=

[
1 + 𝛼

6

(
log

𝑚2

`2 + 𝑏
)]

M̂ (0) (a, 0)

+ 𝛼
∫ 1

0
𝑑𝑥 (1 − 𝑥) 2𝐾0 (𝑀𝑧3) M̂ (0) (𝑥a, 0) . (15)

3. Factorization

The expressions for the renormalized correlators are the starting point to derive factorization
theorems for the pseudo-PDFs. Analogous results for the quasi-PDFs are obtained by taking the
Fourier transform of the space-like correlators to momentum space.

Position space Combining Eqs. (13) and (15), we obtain a relation between the light-cone and
the spatial renormalized matrix elements. As we already mentioned in the Introduction, the
renormalized light-cone matrix element is related to the light-cone PDFs; inverting the Fourier
transform

M̂𝑅

(
a, `2

)
=

∫ 1

−1
𝑑b 𝑒𝑖 b a �̂�𝑅

(
b, `2

)
, (16)
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we obtain for the space-like correlator

M̂𝑅

(
a,−𝑧23; `2

)
=

∫ 1

−1
𝑑b �̃�

(
ba, 𝑚𝑧3,

`2

𝑚2

)
𝑓𝑅

(
b, `2

)
. (17)

The detailed expression for �̃�
(
ba, 𝑚𝑧3,

`2

𝑚2

)
can be worked out from the equations above, but its

detailed form is not so important. What is important, though, is that 𝐶 contains IR divergences
when the scalar field becomes massless. In order to have a proper factorization theorem, we want
the coefficient function �̃� to be IR safe. This is achieved in the limit 𝑀𝑧3 � 1, where we have

M̂𝑅

(
a,−𝑧23; `2

)
=

∫ 1

−1
𝑑b �̃�

(
ba, `2𝑧23

)
𝑓𝑅

(
b, `2

)
+𝑂 (𝑚2𝑧23) , (18)

�̃�

(
ba, `2𝑧23

)
= 𝑒𝑖 b a − 𝛼

∫ 1

0
𝑑𝑥 (1 − 𝑥) log

(
`2𝑧23

𝑒2𝛾𝐸

4

)
𝑒𝑖𝑥 b a . (19)

Expanding the Bessel function in this limit, cancels exactly the logarithmic divergence in the
renormalized expression for M̂𝑅

(
a; `2) , and yields a factorization formula, Eq. (18), akin to the

one that relates the Deep Inelastic Scattering (DIS) structure functions to the PDFs. Three interesting
observations are in order:

• the Wilson coefficient �̃�
(
ba, `2𝑧23

)
is IR finite;

• there are power corrections to the factorization formula: in the case of position-space ob-
servables the corrections are ordered in powers of 𝑧3, i.e. the corrections to the factorized
expression are larger at larger distances;

• the dependence on 𝑧2 only appears at O(𝛼), this is Bjorken scaling in position space.

Momentum space Analogous factorization formulae are obtained for the quasi-PDF by perform-
ing the Fourier transform

𝑞𝑅

(
𝑦, `2, 𝑃2

3

)
=
𝑃3
2𝜋

∫ ∞

−∞
𝑑𝑧3 𝑒

−𝑖𝑦𝑃3𝑧3M̂𝑅

(
𝑃3𝑧3,−𝑧23

)
, (20)

and expanding the for small values of 𝑀2/(b2𝑃2
3). Once again the mass dependence cancels and

the resulting Wilson coefficient is IR finite:

𝑞𝑅

(
𝑦, `2, 𝑃2

3

)
=

∫ 1

−1

𝑑b

|b | 𝐶
(
𝑦

b
,
𝑚2

b2𝑃2
3
,
`2

𝑚2

)
𝑓𝑅

(
b, `2

)
(21)

lim
𝑀2
b2𝑃2

3
→0
𝐶

(
[,

𝑀2

b2𝑃2
3
,
`2

𝑀2

)
= 𝐶

(
[,

`2

b2𝑃2
3

)
=

= 𝛿 (1 − [) + 𝛼


(1 − [) log [

[−1 + 1

(1 − [) log
[
4[ (1 − [) b 2𝑃2

3
`2

]
+ 2[ − 1

− (1 − [) log [

[−1 − 1

(22)
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4. Conclusions

We have performed a one-loop calculation in the simple context of a scalar field theory, showing
that space-like correlators are related to the light-cone PDFs through factorization formulae, just like
for instance the structure functions of DIS. These space-like correlators can be obtained by analytical
continuation of correlators computed by Monte Carlo simulations in Euclidean field theories, as
discussed for instance in Ref. [6]. The lattice data stand exactly on the same footing as experimental
results. They can be used to solve the inverse problems defined in Eqs. (18), (21), and (22). Ideally
lattice data should not be used on their own, but rather they should be included in global analyses,
where they can be treated on the same footing as any other experimental determination, following
the methodology suggested in Refs. [7, 8]. Taming the systematic errors of lattice QCD simulations
becomes of paramount importance in order to maximise the impact of lattice data in a global fit.
While the lattice data struggle to compete with experimental data in the kinematical regions where
the latter are abundant, it would be interesting to fine tune the kinematics of the lattice simulations
to target the flavor combinations and the regions in 𝑥 where the PDFs are less constrained by
experiments.
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