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Lattice QCD calculations of the nucleon electromagnetic form factors are of interest at
both the high and low momentum transfer regions. For high momentum transfers especially there
are open questions which require more intense study, such as the potential zero crossing in the
proton’s electric form factor. We will present recent progress from the QCDSF/UKQCD/CSSM
collaboration on the calculation of these form factors using the Feynman-Hellmann method in
lattice QCD. The Feynman-Hellmann method allows for greater control over excited states which
we take advantage of by going to high values of the momentum transfer. In this proceeding we
present results of the form factors up to 6 GeV2, using 𝑁 𝑓 = 2 + 1 flavour fermions for three
different pion masses in the range 310-470 MeV. The results are extrapolated to the physical pion
mass through the use of a flavour breaking expansion.
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1. Introduction

The nucleon electromagnetic form factors are of great interest for furthering the understanding
of the internal structure of the nucleon as they describe the distribution of the magnetisation and
electric charge inside the nucleon. The behaviour of these form factors with respect to 𝑄2 near
the zero-momentum point determines the charge and magnetisation radius of the nucleon. This
behaviour has been studied extensively using lattice QCD [1–3] and through experiments [4–6].
The large momentum behaviour is also of interest as the currently available experimental results
show a decrease in the ratio of 𝐺𝐸/𝐺𝑀 at large 𝑄2 [7, 8] raising the question of whether 𝐺𝐸 (𝑄2)
crosses zero at some large value of 𝑄2. The matrix element of the electromagnetic current, 𝑗𝜇,
can be written down in terms of the Dirac (𝐹1) and Pauli (𝐹2) form factors, in Euclidean space this
matrix element is defined as

⟨𝑁 (𝑝′, 𝑠′) | 𝑗𝜇 (𝑞) |𝑁 (𝑝, 𝑠)⟩ = 𝑢̄𝑁 (𝑝′, 𝑠′)
[
𝛾𝜇𝐹1(𝑄2) + 𝜎𝜇𝜈

𝑞𝜈

2𝑀𝑁

𝐹2(𝑄2)
]
𝑢𝑁 (𝑝, 𝑠), (1)

where 𝑞 = 𝑝′ − 𝑝 = −𝑄2, 𝜎𝜇𝜈 = 𝑖
2 [𝛾𝜇, 𝛾𝜈] and 𝑢𝑁 (𝑝, 𝑠) is a Dirac spinor with momentum 𝑝 and

spin polarization 𝑠. The proton electromagnetic form factors can then be calculated by using the
above equation with the following electromagnetic current

𝑗𝜇 =
2
3
𝑢̄𝛾𝜇𝑢 − 1

3
𝑑𝛾𝜇𝑑, (2)

neglecting contributions from non-valence quarks. The Sachs electromagnetic form factors will be
used in this proceedings, they are written as combinations of the Dirac and Pauli form factors

𝐺𝐸 (𝑄2) ≡ 𝐹1(𝑄2) − 𝑄2

4𝑚2 𝐹2(𝑄2), (3)

𝐺𝑀 (𝑄2) ≡ 𝐹1(𝑄2) + 𝐹2(𝑄2). (4)

The Feynman-Hellmann method for lattice QCD will be used here to calculate these form factors
at high momentum transfers. The Feynman-Hellmann method has seen success in calculations of
a number of different observables in lattice QCD [9–12].

2. Lattice Methodology

The gauge fields used here are generated with 𝑁 𝑓 = 2 + 1 flavours of O(𝑎)-improved clover
fermions and a tree-level Symanzik-improved gluon action. The volume of the lattice is 𝐿3 × 𝑇 =

323 × 64 with a lattice spacing of 𝑎 = 0.074(2) fm, the scale was set using singlet quantities
as detailed in refs. [13, 14]. The selected hopping parameters give pion masses in the range
310−470 MeV. We use one ensemble at the 𝑆𝑈 (3)flavour-symmetric point and two ensembles away
from this point, where the singlet quark mass 𝑚̄ = 1

3 (𝑚𝑢 + 𝑚𝑑 + 𝑚𝑠) is kept constant.

2.1 Two-point Correlation functions

The momentum projected two-point functions which are calculated on the lattice ensembles
are defined by

𝐺𝜒𝜒̄ ( 𝒑; 𝑡, 𝑡′) =
∑︁
𝒙

𝑒−𝑖𝒑 ·𝒙Γproj.
𝛼𝛽

⟨Ω|𝜒𝛼 (𝑡, 𝒙) 𝜒̄𝛽 (0, 0) |Ω⟩ , (5)
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where the source is located at the origin and 𝑥 is the sink location. Γproj. is the projection matrix
and the interpolating operator for the proton is defined as

𝜒𝛼 (𝑥) = 𝜖𝑎𝑏𝑐 [𝑢(𝑥)]𝑎𝛼
(
[𝑢(𝑥)]𝑏𝛽 [𝐶𝛾5]𝛽𝛾 [𝑑 (𝑥)]𝑐𝛾

)
, (6)

where 𝐶 is the charge conjugation matrix. The interpolating operators will create and annihilate
all states with the quantum numbers of the nucleon. To improve the overlap of the operators with
the ground state nucleon, we apply a gauge-invariant Jacobi smearing to the operators at the source
and the sink [15].

2.2 Feynman-Hellmann Method

The Feynman-Hellmann theorem in quantum mechanics relates the derivative of the energy to
the expectation value of the derivative of the Hamiltonian.

𝜕𝐸𝑛 (𝜆)
𝜕𝜆

= ⟨𝜓𝑛 (𝜆) |
𝜕𝐻 (𝜆)
𝜕𝜆

|𝜓𝑛 (𝜆)⟩ (7)

This theorem can be extended to lattice QCD by making a modification to the Lagrangian. The
modification we will use here takes the following form

L(𝑥) → L(𝑥) + 𝜆𝜇

(
𝑒𝑖𝒒 ·𝒙 + 𝑒−𝑖𝒒 ·𝒙

)
𝑞(𝑥)𝛾𝜇𝑞(𝑥) (8)

where the 𝜇 is not summed over. If the modification in Eq. 8 uses the temporal current (𝛾4), this
will lead to a determination of the electric form factor while choosing a component of the spatial
current (𝛾𝑖) will lead to the magnetic form factor. In the Breit frame ( 𝒑′ = − 𝒑), and for a set of
states which diagonalise the derivative of the Hamiltonian [16], the Feynman-Hellmann theorem
relates the resulting shift in energy to the electromagnetic form factors

𝜕𝐸

𝜕𝜆4

����
𝜆=0

=
𝑀𝑁

𝐸𝑁

𝐺𝐸 (𝑄2) (9)

𝜕𝐸

𝜕𝜆𝑖

����
𝜆=0

=
[𝒆 × 𝒒]𝑖

2𝐸𝑁

𝐺𝑀 (𝑄2), (10)

where 𝒆 is the unit vector in the direction of the spin polarization projection. For the calculations
presented here it is fixed to the third spatial direction, 𝒆 = (0, 0, 1). To calculate the magnetic form
factor we will use the spatial current 𝛾2 and set the first component of 𝒒 to be non-zero such that
the cross product in Eq. 10 does not vanish.

To extract the energy shift arising from the Feynman-Hellmann modification, we construct
ratios of correlators with and without the modification. These ratios will give an effective energy
shift which can be compared with different fit functions. The Feynman-Hellmann method as
described above will only give a linear energy shift in the Breit frame, which therefore restricts the
momentum transfers which can be accessed through this method. However it also means that for
every value of the momentum transfers 𝑄2, the state momentum | 𝒑 | is minimized which reduces
the signal-to-noise ratio of the correlator. Table 1 shows the values of the momentum transfer which
are used here.

The size of 𝜆 needs to be small enough such that the energy shift remains in the linear regime,
but large enough such that it remains possible to extract a non-zero signal. We use a value of

3
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Table 1: The momentum transfer values which are considered here. The choices are restricted to the Breit
frame where 𝒑′ = − 𝒑.

𝒒(𝐿/2𝜋) 𝒑(𝐿/2𝜋) 𝑄2(𝐿/2𝜋)2

(0,0,0) (0,0,0) 0
(2,0,0) ±(1,0,0) 4
(2,2,2) ±(1,1,1) 12
(4,2,0) ±(2,1,0) 20

𝜆 = 10−4 for this analysis and we use a second value of 𝜆 = 2 × 10−4 for selected momenta to
confirm that the 𝜆-dependence is linear. We re-analyse data from Ref. [16] to quantify the excited
state contamination and to add another point to the flavour breaking expansion. For these results it
has been shown that the chosen values of 𝜆 are in the linear regime [16]. For the other ensembles
used here, we use the same value for 𝜆.

2.3 Contamination by Excited States

The main difficulty in calculating form factors at high momenta is the deterioration of the
signal-to-noise ratio at early time slices. This problem with nucleon correlation functions at high
momenta has been known for a long time [17, 18].

We will consider momentum projections of the two-point correlators up to 6 GeV2. In order to
extract energies from these correlators in a consistent manner over this large range of momenta, we
will use two fitting functions and apply a weighted averaging method [19] to the results. The spectral
decomposition of the two-point functions on the lattice reduces to an infinite sum of exponentials.
In order to accurately extract the energy of the nucleon ground state we will consider the first two
terms of this sum. The second term will then encompass all the excited states beyond the ground
state. These two models will be used to fit the data over a range of fit windows,

𝐺𝑎 ( 𝒑; 𝑡) = 𝐴0𝑒
−𝐸0𝑡 , (11)

𝐺𝑏 ( 𝒑; 𝑡) = 𝐴0𝑒
−𝐸0𝑡 + 𝐴1𝑒

−𝐸1𝑡 . (12)

The shift in the energy of the correlation functions is required to calculate the form factors. To make
use of the correlations in the data we construct ratios of the perturbed and unperturbed correlators,
this will give a cleaner signal than fitting the two correlators separately. To make full use of the
correlations we use time-reversed, both parity projections and equivalent momentum projections to
construct the ratios. The first ratio will give the electric form factor from the temporal component
of the current

𝑅𝐸,𝑝 ( 𝒑, 𝑡) =
����𝐺̄+( 𝒑, 𝜆, 𝑡)𝐺̄− ( 𝒑, 0,−𝑡)
𝐺̄+( 𝒑, 0, 𝑡)𝐺̄− ( 𝒑, 𝜆,−𝑡)

���� 1
2

, (13)

and the second gives the magnetic form factor from the spatial component of the current

𝑅𝑀,𝑝 ( 𝒑, 𝑡) =
�����𝐺±

↑ ( 𝒑, 𝜆, 𝑡)𝐺
±
↓ ( 𝒑, 0, 𝑡)𝐺

±
↑ (− 𝒑, 𝜆, 𝑡)𝐺±

↓ (− 𝒑, 0, 𝑡)
𝐺±

↑ ( 𝒑, 0, 𝑡)𝐺
±
↓ ( 𝒑, 𝜆, 𝑡)𝐺

±
↑ (− 𝒑, 0, 𝑡)𝐺±

↓ (− 𝒑, 𝜆, 𝑡)

�����
1
4

. (14)
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Where we have defined 𝐺̄ ( 𝒑, 𝜆, 𝑡) = 1
2 [𝐺 (+ 𝒑, 𝜆, 𝑡) +𝐺 (− 𝒑, 𝜆, 𝑡)], the +,− superscripts indicate the

positive and negative parity projections respectively (Γ± = 1
2 (1 ± 𝛾4)) and we define 𝐺±( 𝒑, 𝜆, 𝑡) =

1
2 [𝐺

+( 𝒑, 𝜆, 𝑡) + 𝐺− ( 𝒑, 𝜆,−𝑡)].
These ratios we will then fit with two functions again, one which only includes the ground state

and another which includes both the ground state and an excited state. The first fit function will
only be valid in the large Euclidean time limit, when the ground state has saturated.

𝑅𝑎 ( 𝒑, 𝑡)
𝑡≫0−−−→ 𝐴(𝜆)𝑒−Δ𝐸 (𝜆)𝑡 (15)

The second fit function will use the energies and amplitudes of the two states of the unperturbed
correlators defined in Eq. 12, and explicitly fits to the energy shift for both the ground state and the
excited states,

𝑅𝑏 ( 𝒑, 𝑡) =
(𝐴0 + Δ𝐴0)𝑒−(𝐸0+Δ𝐸0 )𝑡 + (𝐴1 + Δ𝐴1)𝑒−(𝐸1+Δ𝐸1 )𝑡

(𝐴0 − Δ𝐴0)𝑒−(𝐸0−Δ𝐸0 )𝑡 + (𝐴1 − Δ𝐴1)𝑒−(𝐸1−Δ𝐸1 )𝑡
. (16)

This fit function will describe the data better at smaller Euclidean time which will allow quantitative
monitoring of the contamination from excited states.

To reduce the influence of the choice of fit window we apply a weighted averaging method to
the fit results. This method will take results from different fit windows and from the two fit functions
and assign to each result a weight. The weighted averaging method we use is presented in [19] and
[20], it uses a modified inverse-variance weighting where the weight depends on the 𝜒2

dof value and
the uncertainty of the fit parameters.

𝑤̃ 𝑓 =

𝑝 𝑓

(
𝛿𝐸

𝑓

0

)−2

∑𝑁
𝑓 ′=1 𝑝 𝑓 ′

(
𝛿𝐸

𝑓 ′

0

)−2 , (17)

Where 𝑝 𝑓 is the p-value of the fit 𝑓 and 𝛿𝐸
𝑓

0 is the uncertainty in the value of the ground state
energy of fit 𝑓 . This weighting method allows for the results of both fit functions to be used in a
consistent manner across a large range of 𝑄2 values.

Figure 1 shows the results of both fitting functions on the effective energy shift and figure 2
shows how the energy shift from the fit changes under variations in 𝑡𝑚𝑖𝑛. Figure 2 also shows a bar
graph for the weights assigned to each fit value, this shows that each function has a 𝑡𝑚𝑖𝑛 value for
which the weights peak. Including both fit functions in the weighted average gives a more consistent
method for extracting the energy shift over the range of momenta.

3. Flavour Breaking Expansion

Now that we have established a robust method for determining the energy shifts at finite 𝜆,
these energy shifts are then used to determine the electromagnetic form factors using equations 9
and 10 for each octet baryon. To extrapolate the form factor results to the physical quark masses
we use a flavour breaking expansion which has been detailed in Refs. [21, 22]. The key element of
this expansion is that the average quark mass stays constant,

𝑚̄ ≡ 1
3
(𝑚𝑢 + 𝑚𝑑 + 𝑚𝑠) . (18)

5
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Figure 1: The effective energy of the ratio of correlators for the up quark in the proton. The effective energy
of the one-exponential fit and the two-exponential fit to the ratio are also shown with their respective 𝜒2

dof
values.
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Figure 2: The energy shift extracted from the fit to the ratio with the two-exponential function (blue points)
and the one-exponential function (black points). The bar graph shows the weight of each fit result for the value
of 𝑡min where the blue bars correspond to the two-exponential fit and the black bars to the one-exponential
fit. The red band is the weighted average value, where the inner band shows the statistical uncertainty
and the outer band shows the total uncertainty, this includes the statistical uncertainty and the systematic
uncertainty from the spread between the included fit results. The left hand plot shows the energy shift for the
lattice momentum of 𝒒 = 2𝜋

𝐿
(2, 0, 0), the right hand plot shows the energy shift for the lattice momentum of

𝒒 = 2𝜋
𝐿
(4, 2, 2).

Since we are working with 𝑁 𝑓 = 2 + 1 quark flavours, the up-quark and the down-quark have the
same mass (𝑚𝑙) and hence the expansion will be done in the parameter 𝛿𝑚𝑙 which describes the
distance from the SU(3) flavour symmetric point,

𝛿𝑚𝑙 ≡ 𝑚𝑙 − 𝑚̄. (19)

For the flavour breaking expansion, we calculate seven 𝐷𝑖 values and five 𝐹𝑖 values [22] from the
form factors of the various octet baryons. These quantities are constructed such that they have the

6
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Figure 3: The 𝐹𝑖 quantities for the electric form factor 𝐺𝐸 at 𝑄2 = 1.1 GeV2 plotted against the variation in
the quark mass. The dotted line represents the physical point. This is from the flavour diagonal form factors
of the N, Ξ and Σ baryons.
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Figure 4: The electric and magnetic Sachs form factor results on the three lattice ensembles together with
the result of the extrapolation to the physical pion mass using the flavour breaking expansion.

same value at the SU(3) flavour symmetric point but their values diverge at non-zero 𝛿𝑚𝑙. We also
construct an average 𝐷 value 𝑋𝐷 for which the 𝛿𝑚𝑙 component cancels out. The same is done for
the 𝐹 quantities, these will be used to normalise the 𝐷𝑖 and 𝐹𝑖 quantities, see [22] for more details.
Figure 3 shows an example of the flavour breaking expansion. The 𝐹𝑖 can be seen branching out
at non-zero 𝛿𝑚𝑙, the vertical dotted line on the plot represents the physical quark masses. We fit
a linear function to the results and use this to extrapolate the 𝐹𝑖 and 𝐷𝑖 quantities to the physical
quark masses. From there we can reconstruct the form factors at the physical point for each value
of 𝑄2. Figure 4 shows the results of the electric and magnetic form factors of the proton on the
three ensembles as well as the extrapolated values.
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4. Conclusion and Outlook

The calculation of the electromagnetic form factors with the Feynman-Hellmann method has
been made more robust by the explicit inclusion of excited state effects in the fitting function as
well as the application of a weighted averaging method to quantify systematic uncertainties in the
choice of fit. By including multiple pion masses in the calculation we have been able to produce
an extrapolation of these values to the physical point. To improve the form factor results at high
momentum transfer, even further, we will expand this analysis to include more lattice spacings,
volumes and quark masses in a future publication, this will allow us better control the systematic
uncertainties in the results at large 𝑄2.
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