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1. Introduction

Domain wall fermions are a theoretically attractive but numerically expensive formulation of
lattice QCD. In recent years valence analysis has become a largely solved problem with multiple
propagator inversions accelerated by deflation [1–3] and able to run independently in a large system
using MPI split communicators [4]. Current calculations use globally stored eigenvector deflation
and solve thousands of (deflated) propagators independently in parallel limiting communication
overhead

In contrast, gauge configuration sampling is serially dependent and a strong scaling problem.
A single solution of the linear system is required for each quark mass and the serial dependence of
these requires scaling a single problem to as many nodes as possible.

Some recent systems such as those installed at Juelich and Edinburgh are well balanced with
communication and computation taking the same amount of time and delivering up to 10TF/s per
node on multiple node jobs with a volume per GPU in the region of 324.

This balance will not be preserved in future systems, however. GPU performance is likely
to increase by as much as ten fold, while network performance may only increase by 50% in the
next few years. In order to accelerate HMC evolution new algorithms will be required and in this
proceedings we document our plan to address this.

We plan to use amodified formulation of DomainDecomposedHybridMonte Carlo (DDHMC)
and to combine this with multigrid deflation of the local solves. The difference will be to focus
on large subdomains appropriate to the entire volume processed by a large, multi-GPU computing
node.

2. Large volume domain decomposition

We follow the DDHMC algorithm[5–7] but aim to implement this rather differently.
Large blocks will be used, of$ (324) and no attempt will be made to keep the Dirichlet bound-

ary condition block operators well conditioned. Rather we aim to implement a communication
avoiding algorithm for multi-GPU nodes, rather than to precondition the HMC algorithm. Prior
implementations[6–9] on conventional multi-core microprocessors have found substantial compu-
tational acceleration from smaller, cache resident cells processed by individual processor cores,
reaching very high performance on the Fugaku computer in particular [10, 11].

As discussed by the original author of DDHMC, the locality factorisation of the determinant
must eventually win in computing systems with penalties for non-locality. However, in highly
parallel hardware optimising for cache locality is not possible as opportunities for sequential
ordering of access is limited.

This proposed usage will keep the fraction of active links in the HMC at close to 100%, while
the force for the boundary forces will be suppressed by the width of the bands of inactive links. This
may decorrelate better than the original DDHMC. The speed gain will come solely from avoiding
communication slow down, and will reflect the nature and cost of computing and data access in
modern supercomputers.

The large cell gives the opportunity for larger bands of inactive links than the original imple-
mentation, and peak forces may be suppressed by the distance of propagation.
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2.1 Cuboidal domains and the Dirac operator

We partition the lattice into two domains Ω and Ω̄. Their exterior boundaries haloes are mΩ
and mΩ̄ such that,

mΩ ∩Ω = ∅,

and
mΩ̄ ∩ Ω̄ = ∅,

respectively.
The Dirac operator, with an appropriate non-lexicographic ordering may then be written as

� =

(
�Ω �m

� m̄ �Ω̄

)
,

where �m are terms in the matrix that connect the exterior boundary mΩ to Ω, and �Ω are terms in
the matrix that connect Ω with itself, and similar for the other terms. We write short hand,

�̂Ω =

(
�Ω 0
0 0

)
�̂m =

(
0 �m

0 0

)
�̂ m̄ =

(
0 0
� m̄ 0

)
�̂Ω̄ =

(
0 0
0 �Ω̄

)
The Dirac operator may then be Schur factored as:(

�Ω �m

� m̄ �Ω̄

)
=

(
1 �m�

−1
Ω̄

0 1

) (
�Ω − �m�

−1
Ω̄
� m̄ 0

0 �Ω̄

) (
1 0

�−1
Ω̄
� m̄ 1

)
. (1)

We may then write the Fermion determinant as,

det� = det�Ω det�Ω̄ det
{
1 − �−1

Ω �m�
−1
Ω̄
� m̄

}
,

where we identify
j = 1 − �−1

Ω �m�
−1
Ω̄
� m̄

Following Luscher, we introduce projectors P̂m̄ with both spinor and space structure projecting all
spinor elements in Ω connected by � m̄ to Ω̄, and similarly P̂m.

The matrix �̂ m̄ acts only non-trivially on this subset of spinor components fields in mΩ̄,

�̂ m̄P̂m̄ =

(
0 0
� m̄ 0

) (
Pm̄ 0
0 0

)
=

(
0 0
� m̄ 0

)
,

and so we introduce the matrix,

'̂ =

(
' 0
0 0

)
= P̂m̄−P̂m̄�̂−1

Ω �̂m�̂
−1
Ω̄
�̂ m̄ = P̂m̄−

(
Pm̄ 0
0 0

) (
�−1
Ω

0
0 0

) (
0 �m

0 0

) (
0 0
0 �−1

Ω̄

) (
0 0
� m̄ 0

)
.

Since in the right basis j takes the form

j =

(
1 − - 0
. 1

)
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we see that,
det j = det ' = det(1 − -).

We may therefore treat the determinant of j via a usual pseudofermion integral only over those
fields in the space projected by Pm̄, and call these fields qm̄. When ' is taken as matrix from this
subspace to itself, it is non-singular with an inverse we can compute:

'̂−1 = P̂m̄ − P̂m̄�−1�̂ m̄ =

(
Pm̄ 0
0 0

)
−

(
Pm̄ 0
0 0

)
�−1

(
0 0
� m̄ 0

)
.

This is most easily seen by inserting UDL decomposition of �−1, showing that '̂'̂−1 = P̂m̄.

2.2 Domain shapes

The original algorithm selectedΩ and Ω̄ to be sites located on even and odd cells with a hyper-
cuboidal decomposition, figure 1. We seek to make the domains as large as possible. However,
with a symmetrical block size for $<460 and Ω̄, one cannot increase the size of a domain to be
close to an entire computing node. If the sub-domain were sized to a single computing node, then
sequences involving only �̂−1

Ω
, for example, would not load balance on the machine and leave half

the nodes idle.
Therefore to maximise the number of active links we need a different domain decomposition

scheme. Communication avoidance suggests to make regions inactive only in the neighbourhood of
the boundaries between nodes, with the size of the inactive region controlled to suppress molecular
dynamics forces by however much is required to maintain a good suppression of communication.
This encouraged us to adopt a non-standard domain pattern, figure 2, where Ω is the interior (non-
boundary) cells of each node, while Ω̄ is union of all lattice sites on the surfaces of all computing
nodes. The entire domain Ω̄ is left inactive in the HMC evolution, along with a controllable subset
of links within Ω. This allows minimises the forces in Ω and makes evolution of Ω̄ irrelevant.

Figure 1: Original small domain DDMHC domain layout. Sites containing spin projected pseudofermion
support are labelled with open circles while sites with all spin components in pseudofermions are labelled
filled red. The force for the boundary determinant is suppressed by two factors of the quark propagator. By
using large domains we have control over the level of suppression and can reduce this significantly using
inactive links while retaining a good fraction of active links in the evolution.

2.3 Domain wall pseudofermion structure

The local two flavour determinants are formed in the usual way from Hasenbusch ratios up to
the Pauli Villars mass. These solves can be performed independently on each node and decouple
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Figure 2: Left: alternate domain decomposition adopted in this work: domain Ω̄ is the union of all surface
lattice sites on each computing node and is entirely inactive, while domain Ω is interior. The forces in Ω are
somewhat reduced. Right: Force (norm squared) profile from the boundary determinant in a one dimensional
domain decomposition on a 163 × 48 lattice. The hierarchy of force is visible and may be exploited.

communication on the machine. Within these, the usual red-black preconditioned HMC can be
used. The domain Ω̄ has frozen link variables throughout a HMC trajectory has no change in
determinant. Full sampling is restored with a random translation applied between trajectories.

The two flavour boundary pseudofermion action takes the form

q
†
m̄
(''†)−1qm̄.

Where the boundary links are all inactive (so � m̄ is not differentiated) the force can be calculated
as follows. The force term for the local determinant factor is standard but restricted to the local
cell, and only active links. However all cells add together so the code implementation will be the
standard one, and only the solver will differ.

For the pseudofermion derivative terms involving ', we have,

X'−1 = Pm̄�
−1X��−1� m̄.

The force is suppressed by quark propagation by the distance from the gauge link to the surface or
plane of the domain boundary. This may further be suppressed if more gauge links are kept inactive,
perhaps a band of some depth around the plane connecting subvolumes. This is a tunable parameter
that pretty much guarantees we can obtain a reasonable ratio in the “size” of gauge forces.

AHasenbusch ratio betweenmatrices with differingmass ' and % (e.g. Pauli Villars boundary)
pseudofermion is formed with action,

q
†
m̄
%†'−†'−1%qm̄.

and we may differentiate this using

X'−1 = Pm̄�
−1X��−1� m̄.

and
X' = Pm̄�

−1
Ω (X�Ω)�

−1
Ω �m�

−1
Ω̄
� m̄ + Pm̄�−1

Ω �m�
−1
Ω̄
(X�Ω̄)�−1

Ω̄
� m̄.

The pseudofermion derivative term therefore involves four PV local solves, and two non-local light
quark solves.
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2.4 Results

We carried out an initial implementation of DDHMC by introducing a wrapper for all Grid[12]
Fermion action objects that applies Dirichlet boundary conditions to its gauge field argument.
The communications may be shut off for local domain solves. The present implemention has a
restriction that the suppressed communication boundariesmust alignwithGPUboundaries, however
it is planned to generalise the code for multi-GPU nodes to align the domain boundaries at whole
node boundaries.

The code was designed with flexibility and the domain shapes are in principle completely
general. A projector to the domain is implemented and edges are detected with a mask and shift by
one approach in each direction. This allows for algorithmic flexibility and rapid prototyping at the
expense of lower efficiency in a performance non-critical part of the code.

A standard two flavour Pseudofermion ratio object is sufficient to simulate the local determinant
factors, while a new domain decomposed two flavour ratio object was introduced for the boundary
determinant.

We have evolved a two flavour 163 × 48 system with the Iwasaki gauge action and V = 2.13.
This was subdivided into GPUs, of size 163 × 24 each and the interior cells of 163 × 22 evolved in
each trajectory. The plaquette time history is displayed in figure 3.

During this evolution a timestep ratio of 4:1 between the boundary determinant and the local
determinant was maintained with only three steps per trajectory in the boundary determinant and
12 for the local determinant using the Omelyan integrator.

 0.58
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 0.59
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 0  200  400  600  800  1000  1200  1400  1600  1800

HMC
LD-DDHMC

Figure 3: Plaquette log for two flavour DWF simulation on 163 × 48 with < 5 = 0.01 and Iwasaki gauge
action at V = 2.13. The HMC and DDHMC agree validating the implementation.

We have prototyped a DDHMC algorithm in the Grid library. It runs efficiently on GPU
computing nodes, supporting CUDA, HIP, and SYCL for all large US supercomputer architectures.
Multi-core CPUs are also supported but these are not presently the target of the software optimisation
and algorithmic tuning.

Initial results suggest correct implementation and a substantially reduced level of communica-
tion is enabled.

Although multigrid for DomainWall Fermions is less mature [16–19] than forWilson fermions
[13–15] we intend to combine the evolution with a recently developed approach to set up multigrid
algorithms quickly using Chebyshev filters inside the HMC algorithm. We believe the filter func-
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Figure 4: Filter functions obtained with Chebyshev filters for fast set up multigrid. These have been demon-
strated to both set up and solve a multigrid algorithm faster than a single standard red-black preconditioned
Krylov solver for the Shamir DWF case. This is appropriate to use for local domain solves inside DDHMC
evolution.

tions, figure 4, (which can be obtained recursively) offer good subspace generation with lower cost
than inverse iteration[19].
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