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1. Introduction

Higher gauge theories are physical models whose degrees of freedom associate definite values
to ?-dimensional geometric objects (possibly for several different ?). In the conventional case of
? = 1 these are the Wilson lines. A textbook example [1] is the ?-form electrodynamics [2]. Its
basic dynamical field � is a ?-form and hence can be integrated over ?-dimensional “surfaces” f.
The field � is subject to gauge transformations � ↦→ � + 3_ with arbitrary (? − 1)-form _. The
integral

∫
f
� is invariant only if f is closed; otherwise it picks up a boundary term

∫
mf
_. If f itself

is the boundary of a (? + 1)-dimensional Σ, then one has an integral representation with manifestly
gauge-invariant integrand,

∫
f
� =

∫
Σ
3�. There exists a lattice formulation of models of this type

in which basic degreees of freedom are localized on lattice ?-cells (e.g. edges for ? = 1, plaquettes
for ? = 2 etc.). Of course several fields corresponding to different ? may be included in a single
model.

The model recalled above generalizes the abelian gauge theory. Given the success of the Yang-
Mills theory in particle physics, it is natural to ask whether there exist non-abelian higher gauge
theories. This was answered in the negative already in [2]. Intuitively this may be understood as
follows. Consider a path W. Given a general ? = 1 non-abelian field � the corresponding observable
is the path-ordered exponential %48

∫
W
�. If W is partitioned into = consecutive pieces W1, . . . , W=, then

this may be rewritten as %48
∫
W=
� · · · %48

∫
W1
�. This formula reflects the correspondence between

concatenation of paths and multiplication in the underlying gauge group. Ordering of this non-
commutative multiplication is dictated by the flow of the fictitious time parametrizing W. There is
no such natural ordering on surfaces or higher dimensional manifolds.

There exist algebraic objects more intricate than groups whose structure is meant to capture
higher dimensional geometry [3–5]. In the case considered here those are the 2-groups [6] or,
equivalently, crossed modules of groups [7]. Here we prefer the latter description. They can
be used as a generalization of the concept of a gauge group. The corresponding gauge theories
involve both ? = 1 and ? = 2 degrees of freedom, which are related by a constraint called fake
flatness. Despite the presence of the constraint, it is typically not possible to express one degrees of
freedom in terms of the other. Basic observables are associated to loops (e.g. boundaries of lattice
plaquettes) and closed surfaces (e.g. boundaries of lattice cubes). It turns out that the value of any
closed surface observable always belongs to a certain abelian group, but it is constructed using in
general non-commutative multiplications involving degrees of freedom of both types.

There are severalmotivations to study higher gauge theories. They provide interesting examples
[8–13] of Topological Quantum Field Theories (TQFTs) [14, 15], and hence are expected to describe
certain gapped phases of many body quantum systems. In particular, it has been suggested [16, 17]
that the deep infrared behaviour of certain conventional gauge theories may be governed by a
topological higher gauge theory. Symmetry Protected Topological (SPT) phases protected by
higher symmetries were proposed in [8]. Higher gauge fields are also invoked in string theory [18]
and in certain approaches to bosonization [19–21].

This paper is concerned with a class of lattice higher gauge theories based on crossed modules
of finite groups. In Section 2 we describe the main observables, symmetries, topological charge
sectors and expected phases. In order to probe the corresponding symmetry breaking patterns we
invoke nonlocal order parameters: Polyakov loops and “Polyakov surfaces”. Dynamics is studied
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using both exact andMonte Carlo methods (for the latter we specialize to a specific crossedmodule).
Results of our simulations are presented in Section 3.

We show that if no explicit interaction terms are introduced, ? = 1 and ? = 2 components of
the crossed module-valued gauge fields decouple on the level of correlation functions of local gauge
invariant observables. This should be contrasted with the ordinary non-abelian Yang-Mills theory,
in which already the gauge-invariant kinetic term makes the theory fully interacting. Nevertheless,
some intrinsic interaction does manifest itself in the topological structure and in the behaviour
of nonlocal order parameters. We pay close attention to these topics. To give just one example
supporting the physical relevance of such subtle phenomena, in the Hamiltonian formulation they
correspond to ground state degeneracy and long range entanglement of ground states depending on
topological features of the spatial geometry. More detailed treatment has been presented in [22, 23].

2. Description of studied models

2.1 Crossed modules

A crossed module of groups consists of two groups E, Φ, a homomorphism Δ : Φ → E
(Δ(i1i2) = (Δi1) (Δi2)) and an action B of E on Φ by automorphisms. That is, B is a binary
operation E ×Φ→ Φ satisfying

n B (i1i2) = (n B i1) (n B i2), (n1n2) B i = n1 B (n2 B i), 1E B i = i. (1)

Here 1E ∈ E is the neutral element. In addition, one requires the so-called Peiffer identities to hold:

Δ(n B i) = n (Δi)n−1, (Δi1) B i2 = i1i2i
−1
1 . (2)

Here we restrict attention to crossed modules of finite groups. In general neither E nor Φ has to be
abelian. However, Peiffer identities imply that elements i ∈ Φ satisfying Δi = 1E commute with
the whole Φ. Furthermore, the image im(Δ) of Δ is a normal subgroup of E and hence one may
form the quotient group coker(Δ) = E/im(Δ).

Later on we will consider the following example: E = Φ = Z4 = {0, 1, 2, 3} (addition is the
group operation, all arithmetic being performed mod 4) with

Δ(=) = 2=, < B = = (−1)<=. (3)

In this crossed module, groups E and Φ are abelian, but they are nontrivially intertwined by
operations Δ, B. All simulations are performed for a gauge theory based on this crossed module.
On the other hand, some of our exact results do not depend on this choice.

2.2 Degrees of freedom and the action

Before we explain how to put degrees of freedom valued in a crossed module on a lattice, we
briefly discuss the geometric setup. Lattice sites are called vertices, with typical symbol E. For
every edge (link) 4 we choose a direction (from the source vertex B(4) to the target vertex C (4)). For
every face (plaquette) 5 we choose a corner 1( 5 ) and an orientation. Then the boundary m 5 of 5
is written as the “composition” of some number of edges, starting and ending at 1( 5 ). If traversing
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m 5 one encounters an edge 4 whose given orientation does not agree with that of m 5 , one uses 4−1

instead.
By a field configuration we shall mean an assignment of n4 ∈ E to every edge 4 and i 5 ∈ Φ

to every face 5 such that the fake flatness constraint is satisfied:

Δi 5 = nm 5 . (4)

Here nm 5 is theWilson loop around m 5 built from n degrees of freedom. For example if m 5 = 434241

(with B(41) = C (43) = 1( 5 ), C (41) = B(42) and C (42) = B(43)), then nm 5 = n43n42n41 .
Gauge field n is subject to standard gauge transformations:

n4 ↦→ bC (4)n4b
−1
B (4) , i 5 ↦→ b1 ( 5 ) B i 5 . (5)

Note that i 5 behaves as a matter field placed at 1( 5 ). In addition, one considers also higher
transformations, parametrized by group elements k4 ∈ Φ on edges:

n4 ↦→ (Δk4)n4, i 5 ↦→ k4= (n4= B k4=−1) · · · (n4= · · · n42 B k41)i 5 , (6)

where we wrote m 5 = 4= · · · 41.
General transformations (6) have the property that Wilson loops are not invariant, which

eliminates all local gauge invariant observables built of the n field. Our objective being to generalize
Yang-Mills theory, we regard this as undesirable. There exists a way out by declaring that only
transformations (6) with Δk4 = 1Φ are admitted as gauge transformations. General transformations
(6) are then used in the analytic study of the system and as local constraint-preserving moves in
Monte Carlo simulations. For those purposes we introduce also another class of transformations,
parametrized by j 5 ∈ ker(Δ):

n4 ↦→ n4, i 5 ↦→ j 5 i 5 . (7)

4[0,1, 1
2 ]

H

I

G

•
E [0,0,0]

•
E [0,1,0]

•E [0,1,1]
5[ 1

2 ,
1
2 ,1]

Figure 1: The unit cell of the cubic lattice.

Besides Wilson loops, there are also surface observables. For the general formalism needed
to write down the corresponding formulas, see [23, 24]. Here we confine ourselves to the case of
the boundary of an elementary cube in a cubic lattice. Labeling vertices, edges and faces by their
midpoint (see Fig. 1) and choosing orientations determined by the lexicographic ordering, we have

icube =i [ 12 ,
1
2 ,0]

i [ 12 ,0,
1
2 ]
(n−1
[0,0, 1

2 ]
B i [ 12 ,

1
2 ,0]
)i−1
[ 12 ,0,

1
2 ]
(n−1
[ 12 ,0,0]

B i [1, 1
2 ,

1
2 ]
) (8)

i−1
[ 12 ,

1
2 ,0]
(n−1
[0, 1

2 ,0]
B i [ 12 ,1,

1
2 ]
)i−1
[0, 1

2 ,
1
2 ]
i−1
[ 12 ,0,

1
2 ]
i−1
[ 12 ,

1
2 ,0]

.
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It may come as a surprise that there are 10 elements i in this formula, but note that the last two
factors would cancel with the first two if Φ was assumed to be abelian. More generally, they could
be traded for additional n factors using Peiffer identities and fake flatness. Then the remaining i
factors are in 1-1 correspondence with the six faces of the cube. We note that icube transforms as

icube ↦→ b [0,0,0] B icube (9)

under standard gauge transformations. It is invariant under all transformations (6).
We consider action functionals generalizing the Wilson action:

((n, i) = �1
∑

plaquettes
51(nplaquette) + �2

∑
cubes

52(icube), (10)

where �1, �2 ≥ 0 are coupling constants and 51 : E → R, 52 : Φ → R are fixed functions which
have unique minima at the corresponding neutral elements. Then ((n, i) penalizes excitations of
any plaquettes or cubes. Precise form of 51, 52 functions has to be made separately for every crossed
module (in general there could be multiple coupling constants hidden within, but our model has
only �1, �2). We do need 51(bnb−1) = 51(n) and 52(b B i) = 52(i) for gauge invariance. Precise
form of the action used in our simulations will be given later in (12).

2.3 Topological charges

Let W be a non-contractible loop (e.g. winding around a single direction in toric geometry).
Then the Wilson line nW along W is called a Polyakov loop. For general field configurations its value
depends on the shape of W. Now let nW ∈ coker(Δ) be the reduction of nW modulo the image of Δ.
Using fake flatness one shows that nW is invariant to deformations of W – it depends only on its
homotopy class. We will call it (or rather its conjugacy class, for gauge invariance) a topological
charge. Topological charges are invariant under all local constraint-preserving moves, obstructing
ergodicity in Monte Carlo simulations. In a fixed topological charge sector, any two configurations
may be connected by a sequence of local moves of three types (5, 6, 7) [23].

2.4 Factorization theorem

Let $1 be an observable depending only on plaquette observables and $2 an observable
depending only on cube observables. Then restricting the partition sum to a fixed topological
charge sector, one has factorization 〈$1$2〉 = 〈$1〉〈$2〉. Furthermore, 〈$1〉 depends only on �1

and 〈$2〉 depends only on �2. This is proven using the fact that $1 is invariant to (7) and $2 is
invariant to (6), see [22] for details.

Depending on the choice of the crossed module, there may or may not exist exact symmetries
relating different topological charge sectors, implying that the factorization holds also after summing
over sectors. In any case, volume scaling analysis shows that averages of local observables become
independent on the sector in the thermodynamic limit. Situation is less trivial for nonlocal order
parameters. In the case of (3), we have found an observable whose average depends on both �1, �2

and the topological charge, see 2.5.
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2.5 Symmetries and order parameters

Here we focus on the crossed module (3) and toric geometry, see [22, 23] for discussions
in more general setting. Invoking the terminology of [25], this model enjoys two higher-form
symmetries.

First, there is a 1-form Z2 symmetry resembling the center symmetry from Yang-Mills theory.
It may be implemented as follows: choose a direction ` and a hyperplane perpendicular to `. Then
shift by 2 the value of every link variable in the direction ` and contained in the chosen hyperplane.
This preserves all local gauge invariant observables (and hence the action), but it changes the value
of Polyakov loops in direction `. Note that this construction yields as many Z2 symmetries as
directions, and in general the number of symmetries would depend on the topology. Superficially
these Z2 transformations depend also on the choice of a hyperplane, but this is a gauge artifact.

The 2-form symmetry is a straightforward generalization: one chooses two directions `, a and
shifts by 2 the value of all plaquette variables in the `a directions contained in a chosen plane
orthogonal to directions `, a.

The Polyakov loop is an order parameter for the 1-form symmetry. However, in a finite
volume system the average of a single Polyakov loop is always trivial, as dictated by the symmetry.
Therefore, instead of a single Polyakov loop in the direction ` we consider the absolute value of the
average over the volume perpendicular to `.

To obtain an order parameter for the 2-form symmetry (up to suitable averaging), morally
speaking one has to add all plaquette variables (i, not the plaquettes built of n!) in a 2-plane
parallel to directions `, a. This naive prescription does not yield a gauge-invariant quantity, though.
To fix this issue it is necessary to use link variables to parallel transport all plaquettes to a single
point. This observable will be called a Polyakov surface. Similarly as for the Polyakov loop, in
a finite volume numerical simulation we will consider averages of absolute value of the Polyakov
surface.

2.6 Phase diagram and relation to TQFTs

Due to the factorization phenomenon, the phase diagram may be discussed separately as
a function of �1 and �2, as long as we restrict our attention to local observables.

The fake flatness constraint enforces that all nm 5 plaquettes lie in im(Δ). Based on this
observation one may show [22] that averages of functions of {nm 5 } reduce to averages in standard
lattice gauge theory with gauge group im(Δ). In the case of the crossed module (3) one has
im(Δ) = {0, 2} � Z2. We are most interested in the dimension 4, in which the Z2 gauge theory
enjoys Krammers-Wannier self-duality [26]. Due to the duality, location of the (first order) phase
transition [27] is known exactly to be �crit

1 = 1
2arsinh(1) ≈ 0.441. In the regime �1 < �

crit
1 averages

of plaquettes are small and the 1-form symmetry is unbroken. For �1 > �crit
1 plaquette averages

are larger and the symmetry becomes broken. We remark that the factorization theorem does apply
here because the ratio of two Polyakov loops, in the same direction but displaced, is expressible in
terms of plaquettes within the strip enclosed by the two lines.

In the analysis of cube observables, we may use factorization and put �1 = ∞. Then, up to
effects vanishing in the thermodynamic limit, n fields are turned off. The fake flatness constraint
enforces all i 5 to be valued in the group ker(Δ). Hence we recover a 2-form gauge theory for

6
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the abelian group ker(Δ), equal to Z2 in the case (3). In the dimension 4, such gauge theory
is Krammer-Wannier dual to the Ising model. From the corresponding literature [28] we obtain
a prediction for the location of (a second order) phase transition: �crit

2 ≈ 0.953294(1). Averages
of cubes are small for small �2 and large for large �2. Status of the symmetry is less transparent,
though, since the corresponding order parameter, the Polyakov surface defined in Section 2.5, does
not obey the factorization theorem. This question is largely addressed by our simulations, see
Section 3.

As outlined above, at least for the crossed module (3) and dimension 4 there are 4 phases
determined by two binary choices: �1 ≶ �

crit
1 and �2 ≶ �

crit
2 . They may be thought of as basins of

attraction of four renormalization group fixed points with �1 ∈ {0,∞}, �2 ∈ {0,∞}. Each of these
points may be interpreted as a particular TQFT:

• (�1, �2) = (0, 0): topological Z2 gauge theory [29] of topological charges.

• (�1, �2) = (∞, 0): topological Z4 gauge theory of Polyakov loops.

• (�1, �2) = (0,∞): Yetter’s TQFT. One has invariance to all transformations (6) and all cube
observables are frozen. Neverthless, there remains a rich topological content. In contrast to
standard topological gauge theories, it is sensitive to topological invariants of the underlying
geometry other than the fundamental group. There is an interplay between line operators
(such as topological charges) and surface operators (such as Polyakov surfaces), see Fig. 3.

• (�1, �2) = (∞,∞): topological Z4 gauge theory of Polyakov loops and 2-form Z2 gauge
theory of Polyakov surfaces, completely independent of each other. We remark that in the
analogous limit for general crossed modules, one does not necessarily have factorization on
the level of the topological structure (compare with [23, Sec. 3.4]).

In [23] a Hamiltonian version of our model has been considered and four integrable Hamilto-
nians corresponding to the limits above have been constructed.

3. Numerical simulations

3.1 Notation

In this section we present results obtained through numerical Monte Carlo simulations of the
gauge theory based on the crossed module (3), defined on a four-dimensional lattice with periodic
boundary conditions. For further convenience we denote the lattice extent in direction ` by !`; we
performed our simulations with !0 = !1 = !2 ≡ !, often with different !3.

For a large part of the preceding discussions, fairly general geometries are admissible. Restric-
tion to cubic lattices allows to introduce simpler notations. Lattice sites are labeled by x = (G, H, I, C).
We denote by ̂̀ the unit vector in `-th direction. Let <` (x) be the variable associated to a link in
direction `, starting at lattice site x. Similarly, for plaquette variables in `a plane we write =`a (x).
We also have plaquettes 5`a built of links in standard way; they appear in the fake flatness constaint

2=`a (x) = 5`a (x), (11)

7
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which only partially determines =`a in terms of links. Observables corresponding to cubes with
edges in directions `, a, d will be denoted by 6`ad (G, H, I, C). We chose the following action:

( = �1
∑

x

∑̀
<a

(−1)
5`a (x)

2 + �2
∑

x

∑
`<a<d

(−1)
6`ad (x)

2 . (12)

3.2 Algorithm

The numerical simulation is based on the Metropolis algorithm [30, 31] where local update
movements, separate for the link and faces variables, have been modified in order to accommodate
the fake-flatness constraint. Hence, the constraint is preserved by the updates, i.e. if it was satisfied
by the local degrees of freedom in the initial configuration, it remains fulfilled during the entire
simulation. Additional updates preserving the system energy were sparsely incorporated in between
local update movements in order to decrease autocorrelation times. Their role is to change the sign
of all Polyakov lines and all Polyakov planes and play the role of over-relaxation steps as in Refs
[32–35]. In each point of the parameter space we generate Markov chains of length of the order of
105 configurations spaced by at least ∼ + local updates. In order to ensure ergodicity we repeat the
simulations with different pseudo-random number generator seed and always compare simulations
started with a cold and hot initial configurations. Numerical results presented below come from
simulations where the deviations between such additional simulations were smaller than statistical
uncertainties. In order to estimate the latter we use the explicitly calculated autocorrelation function
which we integrate up to the first non-positive element to conclude the associated autocorrelation
time. All data points shown are presented together with their statistical uncertainties, however in
many cases the error bars are smaller than the symbol size, hence may not be fully visible. The
algorithm as described above does not allow to jump between configurations with different values
of the topological charge. The update which would change the sign of the latter is non-local and
leads to a very poor acceptance rate. We therefore consider separate simulations at fixed topological
charge.

In order to study the phase space of our system we monitor a number of observables. They
can be classified into two classes: local and non-local observables. We define them separately in
the following two subsections and discuss the dynamics of the system unveiled by their numerical
estimates.

3.3 Local observables and phase transitions

The simplest observables which we monitor as we sweep over the parameter space are the
quantities building the action of the system (12). Hence, let us define the average value of the
plaquettes � and cubes � as

� =

��� 1
6+

∑
G,H,I,C

∑̀
<a

5`a (G, H, I, C)
���, (13)

� =

��� 1
4+

∑
G,H,I,C

∑
`<a<d

6`ad (G, H, I, C)
���. (14)

Here + is the total number of lattice sites.

8
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Figure 2: Estimates of the average plaquette Eq.13 and average cube Eq.14 as a function of appropriate
coupling constants �1 and �2.

In Figure 2 we present their dependence on the appropriate coupling constant. Note that due
to the factorization theorem [22] the expectation values of such local operators can depend only
on one of the coupling constant. The left panel of Figure 2 indeed provides confirmation of such
behavior. Namely, the expectation values of the plaquette estimated at two very different values
of the �2 coupling constant are always compatible within their statistical uncertainties and exhibit
a sharp drop in value around the expected first order phase transition at �1 ≈ 0.44. This is also
true irrespective of the topological sector as we are simultaneously showing data coming from
two sectors with different topological charge. The right panel of Figure 2 shows the fluctuations
of the 〈�〉 observable as a function of the �2 coupling constant for estimated using three lattice
volumes. We notice a sharp maximum in that observable which approaches with increasing volume
the position of the expected second order phase transition in the �2 coupling constant. These two
illustrative examples provide numerical evidence of two main facts. First, that the system has
four distinctive regions on phase space separated by two critical values of the couplings �1 and
�2. Second, that the factorisation theorem holds, and therefore also the dynamics as seen through
the local observables such as 〈�〉 and 〈�〉 factorizes and we do not see any interplay between the
dynamics of the links and faces.

3.4 Non-local observables

In this subsection we turn our attention to non-local observables. We investigate two such
observables: %` and %`a , which we call Polyakov line and plane respectively. Here we just state
the final formulae and refer the Reader to [22] for more details:

%` =

������+−1
⊥

∑
x

exp ©« 8c2
!`−1∑
9=0

<` (x + 9 ̂̀)ª®¬
������ , (15)

with the sum taken over G in a plane transverse to the `-th direction and+⊥ =
∏
a≠`

!a is the transverse

volume. Topological charges take the form

&` = exp ©«8c
!`−1∑
9=0

<` (x + 9 ̂̀)ª®¬ , (16)

9
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�1 �2 &0 〈%01〉
0.43 0.1 1 0.0631(2)
0.46 0.1 1 0.0630(1)
0.43 1.1 1 0.9815(3)
0.46 1.1 1 0.9838(2)

�1 �2 &0 〈%01〉
0.43 0.1 -1 0.0631(2)
0.46 0.1 -1 0.0630(1)
0.43 1.1 -1 0.0720(2)
0.46 1.1 -1 0.9238(1)

Table 1: Average values of 〈%01〉 in the four regions of phase diagram estimated on a lattice with ! = 4 and
!3 = 40. Data on the left correspond to the &0 = 1 topological sector whereas the data on the right to the
&0 = −1 sector.

which does not depend on x by fake flatness. Thirdly, we need the Polyakov planes:

%`a =

�����+−1
⊥

∑
G

exp
(
8c

2
Σ`a (G)

)����� , (17)

where +⊥ =
∏

d≠`,a
!d and the sum is taken over a plane transverse to ` and a. Σ`a (G) is the sum of

all =`a (G) in a plane winding around two lattice directions ˆ̀ and â, with appropriate link factors
included to ensure gauge invariance.

We start the discussion of numerical results for %` and %`a with the presentation of the
expectation values of %01 in the four regions of phase space collected in Table 1. A schematic
view of the overall situation is shown in Figure 3. The particular values of �1 and �2 have been
selected based on the observations of phase transitions exhibited by local observables � and � and
are located such that there is one pair of coupling constants per phase. Moreover, we include results
for two topological sectors, with charge &` = 1 and &` = −1 in the ` = 0 direction. The first
thing to notice is that the factorization theorem does not hold anymore and 〈%01〉 has a nontrivial
dependence on both �1 and �2 coupling constants and on the topological charge. This demonstrates
that the fake-flatness constraint on one hand indeed modifies significantly the dynamics, and on the
second hand still allows for independent dynamics in the two kind of dynamical degrees of freedom,
namely links and faces. Second thing to notice is that the topological charge plays a crucial role. In
the sector with &0 = 1, the dynamics of %01 depends only on the �2 coupling constant, which can
be seen by comparing the first two rows and the last two rows in the left part of Table 1. The most
interesting piece of information contained in these tables is located in the last two rows of the table
on the right. In the sector with &0 = −1 the Polyakov plane is also sensitive to the phase transition
in the �1 coupling constant. Hence, it can be used to monitor the dynamics of the system on the
entire plane of parameters.

The last question which we wish to discuss in this contribution is the question whether the
numerical estimates provided in Table 1 are not affected by finite volume effects. In principle, it
could happen that the non-trivial dependency on �1 and �2 disappears in the infinite volume limit.
In order to study this question we performed a series of simulations where we varied the size of the
volume perpendicular to the Polyakov line %0 and to the Polykov plane %01 by increasing the !3

lattice extend. We present the resulting outcomes in Figure 4 for the Polyakov line and in Figure 5
for the Polyakov plane. The plots show data at the same four pairs of (�1, �2) located in the four
regions of the phase space, and again for the two values of the topological charge &0. Two possible

10
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Figure 3: Sketch showing the magnitude of the Polyakov line 〈%0〉 and Polyakov surface 〈%01〉 as a function
of �1, �2 and topological charge. Precise values of these observables at the four points in phase space are
contained in Table 1. Approximately values of the critical couplings are shown.
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Figure 4: Results for the expectation value of the Polyakov line

behaviours can be observed: either the data seems constant with increasing !3 with the exception
of very small values of !3 where an exponentially suppressed finite volume effect is present, or
the data approaches 0 with a 1/

√
(!3) behaviour. Note, because the two behaviours affect the

expectation values with a vastly separated magnitudes, two vertical scales are used in the figures:
data with large expectation value ≈ 0.9 which does not vanish with increasing !3 has the left
vertical scale, whereas the data with small magnitude ≈ 0.1 which clearly vanish with increasing
!3 has the right vertical scale. These figures confirm that the situation described above based on
the values in Table 1 is stable as far as the infinite volume is concerned, in the sense that outcomes
with small magnitude eventually vanish at large !3 whereas those with large magnitude stay finite
and non-zero. This confirms that the Polyakov plane is an interesting observable sensitive to the
complex and intertwinned dynamics of both types of dynamical degrees of freedom present in the
model.

4. Summary and outlook

In this contribution we gave a brief introduction to 2-group gauge models providing a general-
ization of gauge theory which includes dynamical higher symmetries. We presented some details of
the general construction and their motivations. Subsequently, we specialized to a particular model
by choosing a specific 2-group based on two Z4 groups and a possible generalization of the Wilson
action. We discussed the phase-space of that model, identified two phase transitions and provided
order parameters for both of them. For the order parameter for the first-order phase transition

11
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Figure 5: Results for the expectation value of the Polyakov plane

in the �1 coupling constant we proposed the Polyakov line, while for the expected second-order
phase transition in the �2 coupling constant a new observable: the Polyakov surface. Due to the
non-locality of the Polyakov surface, it turned out that it can also serve as an order parameter for the
former phase transition. We have performed numerical simulations of the model which confirmed
the proposed phase diagram of the model and the expected behaviour of the two order parameters.

Looking at the broader level, one would like to improve the algorithmic setup in such a way as
to include topological charge changes and sample the entire phase space of the model. It would be
interesting to check whether other models exist where the factorization theorem does not hold. We
keep these research direction for future investigations.
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