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The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factoriza-
tion of Drell-Yan and other processes with relatively small transverse momentum. We present
a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic
ensemble with a = 0.098 fm. We extract the rapidity-independent (or intrinsic) part of the soft
function through a large-momentum-transfer pseudo-scalar meson form factor and its quasi-TMD
wave function using leading-order factorization in large-momentum effective theory. We also
investigate the rapidity-dependent part of the soft function—the Collins-Soper evolution kernel—
based on the large-momentum evolution of the quasi-TMD wave function.
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1. Introduction

For high-energy processes such as Higgs production at the Large-Hadron Collider, quantum
chromodynamics (QCD) factorization and parton distribution functions (PDFs) have been essential
for making theoretical predictions [1, 2]. But for processes involving observation of a relatively
small transverse momentum, Q⊥ such as in Drell-Yan (DY) production and semi-inclusive deep
inelastic scattering, a new non-perturbative quantity called soft function is required to capture the
physics of non-cancelling soft gluon-radiation at fixed Q⊥ [3–6]. Physically, the soft function in
DY is a cross section for a pair of a high-energy quark and anti-quark (or gluon) traveling in the
opposite light-cone directions to radiate soft gluons of total transverse momentum Q⊥ before they
annihilate. Although much progress has been made in calculating the soft function in perturbation
theory at Q⊥ ≫ ΛQCD [7, 8], it is intrinsically non-perturbative when Q⊥ is O(ΛQCD). Calculating
the non-perturbative transverse-momentum-dependent (TMD) soft function from first principles
became feasible only recently [9].

The main difference in such a calculation in lattice QCD is that it involves two light-like
Wilson lines along directions n± = 1√

2
(1, "0⊥,±1) in (t,⊥, z) coordinates, making direct simulations

in Euclidean space impractical. However, much progress has been made in recent years in calculating
physical quantities such as light-cone PDFs using the framework of large-momentum effective theory
(LaMET) [10, 11]. The key observation of LaMET is that the collinear quark and gluon modes,
usually represented by light-like field correlators [12–15], can be accessed for large-momentum
hadron states. A detailed review of LaMET and its applications to collinear PDFs and other light-
cone distributions can be found in Refs.[16, 17]. More recently, some of the present authors have
proposed that the TMD soft function can be extracted from a special large-momentum-transfer form
factor of either a light meson or a pair of quark-antiquark color sources [9]. Once calculated, the
TMD factorization of the Drell-Yan and similar processes can be made with entirely lattice-QCD-
computable non-perturbative quantities [18–23].

The TMD soft function is often defined and applied not in momentum space but in transverse
coordinate space in terms of the Fourier transformation variable b⊥. In addition, it also depends
on the ultraviolet (UV) renormalization scale µ (often defined in dimensional regularization and
minimal subtraction or MS) and rapidity regulators Y + Y ′ [9, 12],

S(b⊥, µ,Y + Y ′) = e(Y+Y
′)K(b⊥,µ)S−1

I (b⊥, µ) (1)

where the first factor is related to rapidity evolution [described by the Collin-Soper (CS) kernel
K], and the second factor SI is the intrinsic, rapidity independent, part of the soft contribution.
The rapidity-regulator-independent CS-kernel K is found calculable by taking ratio of the quasi-
TMDPDF at two different momenta [20–25]. On the other hand, calculating the intrinsic soft
function on the lattice has never been attempted before.

In this paper we present the first lattice QCD calculation of the intrinsic soft function SI with
several momenta on a 2+1 flavor CLS ensemble with a = 0.098 fm [26], see Table I. In particular
we perform simulations of the large-momentum light-meson form factor and quasi-TMD wave
functions (TMDWFs), whose ratio gives the intrinsic soft function [9]. The Wilson loop matrix
element will be used to remove the linear divergence in the quasi-TMD wave function. The CS
kernel, K , can also be calculated from the external momentum dependence of the quasi-TMD wave
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function [16], and we will calculate it as a by-product. Our result is consistent with that of quenched
lattice calculations of TMDPDFs [25].

2. Theoretical Framework

The intrinsic soft function (SI ) can be obtained from the QCD factorization of a large-
momentum form factor of a non-singlet light pseudo-scalar meson with constituents π = q2γ5q1,
with the transition current made of two quark-bilinears with a fixed transverse separation "b =
("n⊥b⊥, 0),

F(b⊥, Pz) = 〈π(− "P)|(q1Γq1)("b)(q2Γq2)(0)|π( "P)〉c . (2)

Here q1,2 are light quark fields of different flavors, and "P = ("0⊥, Pz). To extract the soft-factor, as
pointed out in Ref. [9], one can choose different quark flavors for the operators and mesonic states
in the above equation. The benefit of this choice is only connected currents will contribute to the
contractions in above form factor, thus a subscript c is added on the right-hand side of Eq. (2). By
construction, the disconnected insertion is not relevant in this scenario which we will adopt in this
work.

It can be shown that the form factor defined in Eq. (2) is factorizable into the quasi-TMDWF
Φ and the intrinsic soft function SI [9, 16]

F(b⊥, Pz) = SI (b⊥)
∫ 1

0
dx dx ′H(x, x ′, Pz)Φ†(x ′, b⊥,−Pz)Φ(x, b⊥, Pz), (3)

where H is the perturbative hard kernel. The quasi-TMDWF Φ is the Fourier transformation of the
coordinate-space correlation function

φ(z, b⊥, Pz) = lim
ℓ→∞

φℓ(z, b⊥, Pz, ℓ)√
ZE (2ℓ, b⊥)

, (4)

φℓ(z, b⊥, Pz, ℓ) =
〈
0
$$$q1

( z
2

nz + "b
)
ΓΦW("b, ℓ)q2

(
− z

2
nz
) $$$π( "P)〉. (5)

In the above W("b, ℓ) is the spacelike staple-shaped gauge link,

W("b, ℓ) =Pexp
[
igs

∫ z/2

−ℓ
ds nz · A(nzs + b⊥)

]
× Pexp

[
igs

∫ b⊥

0
ds n⊥ · A(−ℓnz + sn⊥)

]

× Pexp
[
igs

∫ −ℓ

−z/2
ds nz · A(nzs)

]
, (6)

nz and n⊥ are the unit vectors in z and transverse directions respectively. ZE (2ℓ, b⊥) is the vacuum
expectation value of a rectangular spacelike Wilson loop with size 2ℓ × b⊥ which removes the
pinch-pole singularity and Wilson-line self-energy in quasi-TMDWF [9].

Since the UV divergence of intrinsic soft function obtain the multiplicative renormaliza-
tion [16], the ratio SI (b⊥, 1/a)/SI (b⊥,0, 1/a) calculable on lattice is UV renormalization-scheme
independent, where b⊥,0 is a reference distance which is taken small enough to be calculated
perturbatively. Thus we can obtain the result in the MS scheme through

SI,MS(b⊥, µ) =
(

SI (b⊥, 1/a)
SI (b⊥,0, 1/a)

)
SI,MS(b⊥,0, µ) (7)
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where SI,MS(b⊥,0, µ) is perturbatively calculable, e.g.,

SI,MS(b⊥, µ) = 1 − αsCF

π
ln
µ2b2

⊥
4e−2γE

+ O(αs). (8)

In the present exploratory study, we will consider only leading order matching in Eq. (3), for
which the perturbative kernel is H(x, x ′, Pz) = 1/(2Nc) + O(αs), independent of x and x ′. Using
φ(0, b⊥,−Pz) = φ(0, b⊥, Pz) under parity transformation, we obtain

SI (b⊥) =
2NcF(b⊥, Pz)
|φ(0, b⊥, Pz)|2

+ O(αs, (1/Pz)2), (9)

where power corrections from finite Pz are ignored. Since Pz is related to the rapidity of the meson,
we henceforth replace it by the boost factor γ ≡ Eπ/mπ . Eq. (7) can be written as

SI,MS(b⊥, µ) =
F(b⊥, Pz)

F(b⊥,0, Pz)
|φ(0, b⊥,0, Pz)|2

|φ(0, b⊥, Pz)|2
+ O(αs, γ−2) . (10)

The ratio on the right-hand side of the above expression is independent of the renormalization scale
µ since only the leading-order contribution is kept.

On the other hand, the quasi-TMDWF can be used to extract the Collins-Soper kernel K using
a method similar to [20]

K(b⊥, µ) =
1

ln(Pz
1/Pz

2 )
ln
$$$$C(xPz

2, µ)ΦMS(x, b⊥, P
z
1, µ)

C(xPz
1, µ)ΦMS(x, b⊥, P

z
2, µ)

$$$$ (11)

=
1

ln(Pz
1/Pz

2 )
ln

$$$$$$
∫ 1
0 dxΦ(x, b⊥, Pz

1 )∫ 1
0 dxΦ(x, b⊥, Pz

2 )

$$$$$$ + O(αs, γ−2)

=
1

ln(Pz
1/Pz

2 )
ln
$$$$φ(0, b⊥, P

z
1 )

φ(0, b⊥, Pz
2 )

$$$$ + O(αs, γ−2). (12)

In the second line, again only the leading order matching kernel C(xPz, µ) = 1 + O(αs) is used.
The renormalization factors for Φ are cancelled. The rapidity-scheme-independent CS kernel K is
independent of µ in this approximation because only the leading term has been kept.

While Eqs. (7) and (11) are exact and can be used for precision studies in the future, Eqs. (10)
and (12) are the leading-order approximation used in this pioneering work.

Table 1: Parameters used in the numerical simulation. The first row shows the parameters of the 2+1
flavor clover fermion CLS ensemble (named A654) and the second one shows the number of the A654
configurations and valence pion mass used for this calculation.

β L3 × T a (fm) csw κsea
l

msea
π (MeV)

3.34 243 × 48 0.098 2.06686 0.13675 333
Nc f g κv

l
mv

π (MeV)
864 0.13622 547
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3. Simulation Setup

For the present study, we use configurations generated with 2+1 flavor clover fermions and
tree-level Symanzik gauge action configuration by the CLS collaboration using periodic boundary
conditions [26]. The detailed parameters are listed in Table 1. Note that mπ = 547 MeV instead of
333 MeV is used for valence quarks in order to have a better signal. Physically, the soft function
becomes independent of the meson mass for large boost factors γ.

To calculate the form factor in Eq.(2), we generate the wall source propagator,

Sw(x, t, t ′; "p) =
∑
'y

S(t, "x; t ′, "y)ei 'p ·('y−'x), (13)

on the Coulomb gauge fixed configurations at t ′ = 0 and tsep for both the initial and final meson
states. S is the quark propagator from (t ′, "y) to (t, "x). Then we can construct the three point function
(3pt) corresponding to the form factor in Eq. (2),

C3(b⊥, Pz ; pz, tsep, t) =
1
L3

∑
x

Tr〈S†
w("x + "b, t, 0;−"p)γ5ΓSw("x + "b, t, tsep; "p)

× S†
w("x, t, tsep;− "P + "p)γ5ΓSw("x, t, 0; "P − "p)〉. (14)

The quark momentum "p = ("0⊥, pz), and the relation γ5S†(x, y)γ5 = S(y, x) have been applied for
the anti-quark propagator. We have tested several choices of Γ, and will use the unity Dirac matrix
Γ = I as it has the best signal and describes the leading twist light-cone contribution in the large Pz

limit. Notice that the Γ = γ4 case is subleading in the large Pz limit and is less suitable, although
the excited state contamination might be smaller.

By generating the wall source propagators at all the 48 time slices with quark momentum
pz = (−2,−1, 0, 1, 2) × 2π/(La), we can maximize the statistics of the 3pt function with all the
meson momenta Pz from 0 to 8π/(La) (∼ 2.1 GeV) with arbitrary t and tsep. C3(b⊥, Pz, tsep, t) is
related to the bare F(b⊥, Pz) using standard parameterization of 3pt with one excited state,

C3(b⊥, Pz ; pz, tsep, t) =
Aw(pz)2
(2E)2

e−Etsep
[
F(b⊥, Pz) + c1(e−∆Et + e−∆E(tsep−t)) + c2e−∆Etsep

]
. (15)

Aw is the matrix element of the Coulomb gauge fixed wall (CFW) source pion interpolation field,
E =

√
m2

π + Pz2 is the pion energy, ∆E is the mass gap between pion and its first excited state,
c1,2 are parameters for the excited state contamination. Note that the pz dependence factor A2

w will
cancel.

The same wall source propagators can be used to calculate the two-point function related to
the bare quasi-TMDWF,

C2(b⊥, Pz ; pz, ℓ, t) =
1

L3
√

ZE (2ℓ, b⊥)

∑
x

Trei 'P · 'x 〈S†
w("x + "b, t, 0;−"p)W("b, ℓ)γ5ΓΦSw("x, t, 0; Pz − "p)〉

=
Aw(pz)Ap

2E
e−Etφℓ(0, b⊥, Pz, ℓ)(1 + c0e−∆Et ), (16)

where again we parameterize the mixing with one excited state. Ap is the matrix element of the
point sink pion interpolation field. It will be removed when we normalize φℓ(0, b⊥, Pz, ℓ) with
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Figure 1: (a) Results for the ℓ dependence of the quasi-TMDWF with z = 0, and also the square root of the
Wilson loop which is used for the subtraction, taking the {Pz, b⊥, t} = {6π/L, 3a, 6a} case as a example. All
the results are normalized with their values at ℓ = 0. (b) The ratios C3(b⊥, Pz, tsep, t)/C2(0, Pz, 0, tsep) (data
points) which converge to the ground state contribution at t, tsep → ∞ (gray band) as function of tsep and t,
with {Pz, b⊥} = {6π/L, 3a}.

φℓ(0, 0, Pz, 0). We choose ΓΦ = γtγ5 to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a similar staple-shaped gauge link operator, the
mixing effect could be sizable when summing various contributions. We find that the mixing effects
can reach order 5% for the transverse separation b⊥ ∼ 0.6fm. These effects will be included in
the following analysis as one of the systematic uncertainties, while a comprehensive study on the
mixing effects will be conducted in the future.

4. Numerical Results

Fig. 1(a) shows the dependence of the norm of quasi TMDWFs on the length ℓ of the Wilson-
line. As one can see from this figure, with {Pz, b⊥, t} = {6π/L, 3a, 6a}, both the quasi-TMDWF
φℓ(0, b⊥, Pz, ℓ) and the square root of the Wilson loop ZE decay exponentially with length ℓ, but
the subtracted quasi-TMDWF is length independent when ℓ ≥ 0.4 fm. Based on this observation,
we will use ℓ = 7a = 0.686 fm as asymptotic results for all cases in the following calculation.

We performed a joint fit of the form factor and quasi-TMDWF with the same Pz and b⊥ with the
parameterization in Eqs. (15) and (16). The ratios C3(b⊥, Pz, tsep, t)/C2(0, Pz, 0, tsep) with different
tsep and t for the {Pz, b⊥} = {6π/L, 3a} case are shown in Fig. 1(b), with ground state contribution
(gray band) and the fitted results at finite t2 and t (colored bands). In this calculation, the excited
state contribution is properly described by the fit with χ2/d.o.f. = 0.6. As shown in the plot, our
data in general agree with the predicted fit function (colored bands).

The resulting soft factor as function of b⊥ is plotted in Fig. 2, at γ= 2.17, 3.06 and 3.98, which
corresponds to Pz = {4, 6, 8}π/L = {1.05, 1.58, 2.11} GeV respectively. As in Fig. 2, the results
at different large γ are consistent with each other, demonstrating that the asymptotic limit is stable
within errors. We also compare the intrinsic soft function extracted from the lattice to the one-loop
result in Eq. (8), with αs(µ = 1/b⊥) evolving from αs(µ = 2 GeV) ≈ 0.3. The shaded band
corresponds to the scale uncertainty of αs: µ ∈ [1/

√
2,
√

2]× 1/b⊥. Notice that the b⊥ dependence
of the former comes purely from the lattice simulation, while that for the latter is from perturbation
theory.
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Figure 2: The intrinsic soft factor as a function of b⊥ with b⊥,0 = a as in Eq. (10). With different pion
momentum Pz , the results are consistent with each other. The dashed curve shows the result of the 1-loop
calculation, see Eq. (8), with the strong coupling constant αs(1/b⊥). The shaded band corresponds to the
scale uncertainty of αs: µ ∈ [1/

√
2,
√

2] × 1/b⊥. The systematic uncertainty from the operator mixing has
been taken into account.

Figure 3: Quasi-TMDWF (left panel) and extracted Collins-Soper kernel (right panel), as functions of b⊥.
The visible Pz dependence of the quasi-TMDWF can be primarily understood by that from the Collins-
Soper kernel, as the kernel we obtained with tree level matching is consistent with up to 3-loop perturbative
calculations (at small b⊥) with the strong coupling αs at the scale 1/b⊥, and also the non-perturbative result
from the pion quasi-TMDPDF. Results based on quenched lattice calculations, labeled as “Hermite" and
“Bernstein" [25], are also shown for comparison. Errors in the lower panel correspond to the statistical errors
and the systematic errors from the non-zero imaginary part as well as the operator mixing effects.

We can see a clear Pz dependence in the quasi-TMDWF |φℓ(0, b⊥, Pz, ℓ)| normalized with
φℓ(0, 0, Pz, 0), as in the left panel of Fig. 3. This dependence is related to the CS kernel as shown
in Eq. (12), up to possible LaMET matching effects and power corrections of order 1/γ2. Thus we
use Eq. (12) to extract the kernel in the tree level approximation, and compare the result in the right
panel of Fig. 3 with that of Ref. [25] and up to 3-loop perturbative ones with αs(µ = 1/b⊥). We
estimate the systematic uncertainty by combining in quadrature the contributions from the operator
mixing effects, and from the non-vanishing imaginary part of the quasi-TMDWF which should be
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cancelled by proper treatments on higher order effects. Our result is consistent with that of Ref. [25].

5. Summary and Outlook

In this work, we have presented an exploratory lattice calculation of the intrinsic soft func-
tion by simulating the light-meson form factor of four-quark non-local operators and quasi-TMD
wave functions. Our result shows a mild hadron momentum dependence, which allows a future
precision study to eliminate the large momentum dependence using perturbative matching [16]. As
a reliability check, the agreement between the CS kernel obtained from our quasi-TMDWF result
and previous calculations shows that the systematic uncertainties including the partially quenching
effect, the only leading perturbative matching and missing power corrections 1/γ in LaMET expan-
sion might be sub-leading. Iur calculation paves the way towards the first principle predictions of
physical cross sections for, e.g., Drell-Yan and Higgs productions at small transverse momentum.
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