
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
0
4

The lower moments of nucleon structure functions in
lattice QCD with physical quark masses

Ryutaro Tsuji,†,a,∗ Yasumichi Aoki,b Ken-Ichi Ishikawa,c Yoshinobu Kuramashi,d

Shoichi Sasaki,a Eigo Shintanid and Takeshi Yamazakie.d

(PACS Collaboration)
aDepartment of Physics, Tohoku University,
980-8578,Sendai, Japan

bRIKEN Center for Computational Science,
650-0047, Kobe, Japan

cCore of Research for the Energetic Universe, Graduate School of Advanced Science and Engineering,
739-8526, Higashi-Hiroshima, Japan

dCenter for Computational Sciences, University of Tsukuba,
305-8577, Tsukuba, Japan

eFaculty of pure and Applied Sciences, University of Tsukuba,
305-8571, Tsukuba, Japan

E-mail: tsuji@nucl.phys.tohoku.ac.jp

We present results for the nucleon structure functions and form factors obtained from 2+1 flavor
lattice QCD with physical light quark masses (mπ = 135 MeV) in a large spatial extent of about
10 fm. Our calculations are performed with the PACS10 gauge configurations generated by the
PACS Collaboration with the six stout-smeared O(a) improved Wilson-clover quark action and
Iwasaki gauge action at β = 1.82 and 2.00 corresponding to lattice spacings of 0.085 fm and
0.064 fm respectively. The lower moments of structure functions, 〈x〉u−d and 〈x〉∆u−∆d given
by the twist-2 operators being properly renormalized, are evaluated in the MS scheme at the
renormalization scale of 2 GeV only at β = 1.82, since the renormalization factors at β = 2.00
have not yet determined nonperturbatively in the RI/MOM scheme. Instead, at two lattice spacings,
we evaluate appropriate ratios of gA/gV and 〈x〉u−d/〈x〉∆u−∆d , which are not renormalized in the
continuum limit. These quantities thus can be directly compared with the experimental data
without the renormalization.
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1. Introduction

In the standard model of modern particle physics, the nucleon is known to be a composite
particle made of quarks and gluons, and their interactions are described by QCD. Due to the non-
perturbative nature of QCD at low energy scales, the nucleon structure that is governed by strong
many body problem of the elementary constituents is one of the great challenges of lattice QCD.
An appropriate theoretical framework to investigate the nucleon structure is established through
the transverse-momentum-dependent parton distributions and the generalized parton distributions,
which unify the concepts of parton distributions obtained from the deep inelastic scattering exper-
iments and nucleon elastic form factors. The parton distributions are not only used as inputs for
simulations of high energy scattering processes in high energy physics [1], but also play important
roles to describe various properties of the nucleon such as proton’s single spin asymmetry, hadron
tomography, gluons saturation and so on [2, 3].

Apart from the direct calculation of the parton distributions from lattice QCD [4, 5], it is
still important to determine the lower moments of the parton distributions associated with twist-2
operators. Since the isovector momentum fraction (〈x〉u−d) and the isovector helicity fraction
(〈x〉∆u−∆d) are well evaluated from the experimental data, the calculation of these quantities is a
benchmark to explore the nucleon structure from lattice QCD. In addition, the precision on the
isovector axial-vector coupling (gA) is greatly improved by the current β-decay measurements with
cold and ultracold neutrons [6]. Therefore, it offers an opportunity to pursue the high-precision
calculation of gA in lattice QCD in the context of a benchmark study.

2. Method

Both the lower moments of parton distributions (Twist-2) and the axial-vector (vector) coupling
(Local) can be evaluated from the nucleon matrix element of a given bilinear operator, OΓ = ψ̄Γψ
as defined in Table 1.

Table 1: The correspondence of the quantities and operators in the matrix elements[7].

Type of operator Local Twist-2
Observable gV (vector) gA (axial-vector) 〈x〉u−d (unpolarized) 〈x〉∆u−∆d (polarized)

Γ γ4 γiγ5 γ4
←→
D 4 − 1

3
∑

k γk
←→
D k γ3

←→
D 4 + γ4

←→
D 3

In general, the nucleon matrix elements are evaluated from a ratio of the nucleon three-point
function with a given operator OΓ inserted at t = top being subject to a range of tsnk > t > tsrc, to
the nucleon two-point function with a source-sink separation (tsep = tsnk − tsrc) as

R(tsep, top) ≡
C3pt(top, tsep)

C2pt(tsep)
→

tsep�top�0
〈1|OΓ |1〉 + O(e−tsep∆) + O(e−(tsep−top)∆), (1)

where |i〉 represents the i-th energy eigenstate and i = 1 stands for the ground state of the nucleon.
If the condition tsep � top � 0 is satisfied, the desired matrix element 〈1|OΓ |1〉 can be read off from
an asymptotic plateau, which is independent of a choice of top. Narrower source-sink separation
causes systematic uncertainties stemming from the excited states contamination represented by two
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terms of O(e−tsep∆) and O(e−(tsep−top)∆), where ∆ ≡ E2 − E1 denotes a difference between the two
energies of the ground state (E1) and the lowest excited state (E2).

In this study, the nucleon interpolating operator is constructed by the exponentially smeared
quark operators, so as to maximize an overlap with the nucleon ground state as

N(t, ®p) =
∑
®x ®x1 ®x2 ®x3

e−i ®p · ®xεabc
[
uTa (t, ®x1)Cγ5db(t, ®x2)

]
uc(t, ®x3) × Π3

i=1ϕ( ®xi − ®x)

with ϕ( ®xi − ®x) = Aexp(−B| ®xi − ®x |) (2)

where there are two smearing parameters (A,B). Since the condition, tsep � top � 0 appearing
in Eq. (1) is usually not satisfied in practice, the excited states contaminations could not be fully
eliminated by tuning smearing parameters.

In order to eliminate the systematic uncertainties, one should calculate the ratio (1) with several
choices of tsep, and then makes sure whether the evaluated value of the nucleon matrix element does
not change with a variation of tsep within a certain precision. This is called the ratio method that is
mainly used in this study. Alternatively, there is another method called the summation method [8].
The summation method use a sum of the ratio R(top, tsep) with respect to top as

S(tsep) ≡
tsep∑
top=0

R(top, tsep) →
tsep�0

const. + tsep〈1|OΓ |1〉 + O(e−∆tsep) (3)

When more than 3 sets of tsep are carried out in the ratio method, one can also perform the summation
method [8], where the matrix element 〈1|OΓ |1〉 can be read off from a slope of the linear dependence
of tsep as described in Eq. (3). A difference of the central values obtained from the two methods is
quoted as a systematic error on the matrix element evaluated from the ratio method in this study.

In order to compare with the experimental values or other lattice results, the bare matrix element
obtained from the above mentioned methods should be renormalized with the renormalization
constants ZOΓ for each Γ operator in a certain scheme. In this study, for the twist-2 operators,
the Regularization Independent MOMentum subtraction (RI/MOM) scheme [9] is used as the
intermediate scheme in order to evaluate the renormalization constants ZOΓ in fully nonperturbative
manner. The renormalization constants determined in the RI/MOM scheme are then converted to
the MS scheme at certain scale µ0 and evolved to the scale of 2 GeV using the perturbation theory.

In general, the final result of ZMS
OΓ
(2GeV) receives the residual dependence of the choice of

the matching scale µ0. It is true that the perturbative conversion from the RI/MOM scheme to the
MS scheme produces the residual µ0 dependence, but the perturbative uncertainty is not a major
concern here. There are the other two sources as follows. One stems from lattice discretization
errors at higher µ0, while another is originated from the nonperturbative effect that becomes relevant
at lower µ0 [10–12]. The latter is not so serious if the spatial volume is not so large, because the
lower momentums are not accessible in the smaller volume. However, in this study, we use 644

lattice, corresponding to a linear spatial extent of 5.5 fm, that is rather large spatial size.
In order to minimize the systematic uncertainties associated with the residual µ0-dependence,
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we used following two types of fitting functional forms as functions of the matching scale µ0:

f Global
OΓ

(µ0) =
c−1

(Λ−1µ0)2
+ c0 +

kmax∑
k>0

ck(aµ0)2k and f IR−trunc.
OΓ

(µ0) = c0 +

kmax∑
k>0

ck(aµ0)2k (4)

with c0 being the µ0-independent value of ZMS
OΓ
(µ) at the renormalization scale µ = 2 GeV. The

value of kmax is determined by a χ2 test for goodness fit, so that kmax = 3 is chosen for the former,
while kmax = 1 is chosen for the later. In the former form, Λ is responsible for a scale associated
with the nonperturbative effect. The former is applied for fitting all data, while the latter is used for
fitting the data in a restricted range of µ0 ≥ µ. The discrepancy between the values of c0 extracted
from these fittings is quoted as a systematic error on the renormalization constant ZMS

OΓ
(2 GeV).

3. Simulation details

We mainly use the PACS10 configurations generated by the PACS Collaboration with the
six stout-smeared O(a) improved Wilson-clover quark action and Iwasaki gauge action at β =
1.82 and 2.00 corresponding to the lattice spacings of 0.085 fm (coarser) and 0.064 fm (finer)
respectively [13–17]. When we compute nucleon two-point and three-point functions, the all-mode-
averaging (AMA) technique[18] is employed in order to reduce the statistical errors significantly
without increasing computational costs. Two of three lattice ensembles are created with same lattice
cutoff, but on different lattice sizes. The smaller volume ensembles are used for the finite volume
study on the axial-vector coupling gA and nucleon elastic form factors, and also used for computing
the renormalization constants which are known to be less sensitive to the finite volume effect.

Table 2: Summary of simulation parameters used in this study.

β L3 × T a−1 [GeV] La [fm] κud κs Mπ [GeV]
1284 lattice 1.82 1283 × 128 2.3162(44) 10.9 0.126117 0.124902 0.135
644 lattice 1.82 643 × 64 2.3162(44) 5.5 0.126117 0.124902 0.138
1604 lattice 2.00 1603 × 160 3.0892(25) 10.3 0.12584 0.124925 0.135

4. Numerical results

In this study, we first present the preliminary results for the renormalized values of the isovector
momentum fraction (〈x〉u−d) and the isovector helicity fraction (〈x〉∆u−∆d), which are calculated
only at a single lattice spacing with the 1284 lattice ensemble. We will later discuss the discretization
uncertainties on two specific ratios of gA/gV and 〈x〉u−d/〈x〉∆u−∆d, which are not renormalized
in the continuum limit. These quantities, which are evaluated with both 1284 and 1604 lattice
ensembles, can be directory compared with the experimental data without renormalization.

4.1 Renormalized values of momentum and helicity fractions from 1284 lattice ensemble

In order to evaluate 〈x〉u−d and 〈x〉∆u−∆d, we calculate both the bare nucleon matrix elements of
the relevant twist-2 operators and their renormalization constants at lattice spacing of a = 0.085 fm.
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Table 3: Details of the measurements: time separation (tsep), the smearing parameters (A,B), the number of
high-precision calculation (Norg), the number of configuration (Nconf), the measurements per configuration
(NG) and the total number of the measurement (Nmeas = Nconf × NG), respectively.

tsep/a Smearing parameters Norg NG Nconf Nmeas

1284 lattice 10 (A,B) = (1.2,0.16) 1 128 20 2,560
12 1 256 20 5,120
14 2 320 20 6,400
16 4 512 20 10,240

644 lattice 12 (A,B) = (1.2,0.14) 4 256 100 25,600
14 4 1,024 100 102,400
16 4 2,048 100 204,800

1604 lattice 16 (A,B) = (1.2,0.11) 4 64 15 9,210
19 2 64 15 15,360

As for the calculations of the bare matrix elements, four data sets using tsep/a = {10,12,14,16} are
calculated and two methods are employed in the extraction of the bare matrix elements. According
to the analysis based on the ratio method, we first observed that tsep/a = {14,16} for the unpolarized
case and tsep/a = {12,14,16} for the polarized case are large enough for reducing the excited states
contamination in three-point functions with the twist-2 operators respectively. Next, all data sets
with four values of tsep/a are used in the summation method in order to estimate the systematic
error associated with the excited states contamination in each channel.

The renormalization constants of the local vector and axial-vector currents are obtained with
the Schrödinger functional scheme at vanishing quark masses as ZV = 0.95153(76)(1487) and
ZA = 0.9650(68)(95) [19], while the renormalization constants of the twist-2 operators are evaluated
in the RI/MOM scheme as described in Sec. 2.

Table 4: List of error sources in the renormalized nucleon matrix elements with the twist-2 operators.

List of errors (%)
Momentum fraction 〈x〉u−d Helicity fraction 〈x〉∆u−∆d

Error source Total Bare value Z-factor Total Bare value Z-factor
Statistical 5.30 4.60 2.52 4.39 3.49 2.91
Systematic 31.1 19.5 24.5 24.0 3.49 22.5

As shown in Fig 1, we compare our preliminary results of the renormalized values of 〈x〉u−d (left
panels) and 〈x〉∆u−∆d (right panels) with the values obtained from recent lattice QCD calculations
(upper panels) and global QCD analyses of experimental data (lower panels). The central values
of our results are well within gray bands corresponding to the experimental values given by global
fit determinations [4, 5]: 〈x〉u−d = 0.155(5) and 〈x〉∆u−∆d = 0.199(16). It is worth mentioning
that our statistical precisions are also comparable to the global QCD analyses. This indicates that
lattice QCD is partially qualified to directly investigate the parton distributions as an alternative to
actual experiments. However, it should be kept in mind that our preliminary results of 〈x〉u−d and
〈x〉∆u−∆d still have large systematic errors as shown in Tab. 4. As for the bare matrix elements,
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Figure 1: Comparison of recent lattice QCD calculations (upper panels) and global QCD analyses of
experimental data (lower panels). The red symbols represent our preliminary results. The error bars denote
their statistical errors only, while the outer brackets with our results represent the total errors including the
systematic one. The gray bands correspond to the values of an average given by global fit determinations [4, 5].

discrepancies between the results obtained from the two methods are quoted as a systematic error
stemming from the excited states contaminations. It is found that for the unpolarized case the
evaluated systematic error with the present sets of tsep/a = {10,12,14,16} is larger than the
statistical one, while the statistical and systematic uncertainties are also comparable in the polarized
case. A further calculation with the larger choice of tsep/a(> 16) is required to reduce this particular
uncertainty. The largest error on 〈x〉u−d (〈x〉∆u−∆d) is the systematic uncertainty in determination
of the renormalization constants. This systematic error was evaluated by a difference between
the results obtained by two fitting procedures with Eqs. (4) which have different ways to treat the
residual µ0-dependence in smaller µ0 region. As shown in Tab. 4, the total systematic errors, which
are about 6 times larger than the total statistical errors, are dominated by the systematic errors on
the renormalization constants. To reduce the total systematic error, the RI/SMOM scheme that was
used for determination of the renormalization constant for the local operators [20], could be useful
even for the twist-2 operators.

4.2 Ratios of gA/gV and 〈x〉u−d/〈x〉∆u−∆d from 1284 and 1604 lattice ensembles

We next present our preliminary results of gA/gV and 〈x〉u−d/〈x〉∆u−∆d obtained from both
1284 and 1604 lattice ensembles, since the renormalization constants are not yet evaluated at finer
lattice spacing. In Fig 2, we first shows the tsep dependence of the ratios of gA/gV (left panel)
and 〈x〉u−d/〈x〉∆u−∆d (right panel), both of which are evaluated with the ratio method. All three
ensembles that include the 644 lattice ensemble are used to calculate the values of gA/gV , while
only the 1284 and 1604 lattice ensembles are used to calculate the value of 〈x〉u−d/〈x〉∆u−∆d.
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Figure 2: Ratios of bare values of gA and gV (left), and 〈x〉u−d and 〈x〉∆u−∆d (right) as a function of tsep.
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Figure 3: Preliminary results of gA/gV and 〈x〉u−d/〈x〉∆u−∆d obtained from 1284 and 1604 lattice ensembles.
The value of 〈x〉u−d/〈x〉∆u−∆d obtained from the 1604 lattice ensemble (open diamond symbol) receives a
large uncertainty regarding the fit range dependence that is represented by dashed error bar.

At first glance, the conditions of tsep ≥ 1 fm for the case of gA/gV and tsep ≥ 1.2 fm for the case
of 〈x〉u−d/〈x〉∆u−∆d can be read off from the 1284 lattice results, in order to keep the systematic
uncertainties stemming from the excited states contamination smaller than the statistical ones. As
for the results of gA/gV , the preliminary results from the 1604 lattice ensemble show a consistent
observation, though the higher accuracy results from the 644 lattice ensemble reveal that the data
of tsep ≈ 1 fm is slightly deviated from the results for tsep ≥ 1.2 fm.

On the other hand, the preliminary results of 〈x〉u−d/〈x〉∆u−∆d from the 1604 lattice ensemble
have not shown any obvious trend of tsep dependence, since a large uncertainty still remains for the
data given with tsep ≈ 1.2 fm. As shown in the right panel of Fig 2, two data points, which are
obtained from two fitting ranges used in the ratio method, are plotted at tsep ≈ 1.2 fm. The upper
data point agrees the data obtained with tsep ≈ 1.0 fm, while the lower data point follows the trend
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observed in the 1284 lattice results. It is difficult to draw any firm conclusion whether the systematic
uncertainties stemming from the excited states contamination are under control for the 1604 lattice
results of 〈x〉u−d/〈x〉∆u−∆d within the current statistics. Therefore, in the later discussion, we use
the lower data point of tsep ≈ 1.2 fm for the 1604 lattice result, while a systematic error estimated
by a difference between two data points is also quoted.

We next examine the lattice discretization uncertainties on gA/gV and 〈x〉u−d/〈x〉∆u−∆d using
the results obtained at two lattice spacings as shown in Fig 3. According to what we discussed
using Fig 2, in the case of gA/gV there is no appreciable tsep dependence in the large volume results
obtained from both lattice ensembles if tsep ≈ 1.0 fm is satisfied. Therefore, we simply use the
combined results with tsep/a = {12,14,16} for the 1284 lattice and tsep/a = {16,19} for the 1604

lattice in the left panel of Fig 2. Both results at two lattice spacings reproduce the experimental
value [6] within their statistical errors. This indicates that the lattice discretization uncertainties on
the renormalized value of gA are smaller than their statistical uncertainty of less than 2%.

As for the quantity of 〈x〉u−d/〈x〉∆u−∆d, although the 1284 lattice result obtained at the coarser
lattice spacing shows better agreement with the experimental values [4, 5], the large systematic
error remains for the preliminary result obtained from the 1604 lattice ensemble. Needless to say,
further reduction of both statistical and systematic errors is needed for the 1604 lattice results.

5. Summary

We have calculated the renormalized values of 〈x〉u−d and 〈x〉∆u−∆d at a single lattice spacing
of 0.085 fm, and also the two specific ratios of gA/gV and 〈x〉u−d/〈x〉∆u−∆d at two lattice spacings
of 0.085 fm and 0.064 fm , using the PACS10 gauge configurations. This work is a benchmark
to explore the nucleon structure from lattice QCD calculations. First, we have succeeded in
reproducing global QCD analyses of experimental data for both quantities of 〈x〉u−d and 〈x〉∆u−∆d
with high statistical precision using the 1284 lattice ensemble. However, it is worth remarking
that the large systematic uncertainties remain in determination of the renormalization constants. In
future project, instead of the RI/MOM scheme, the RI/SMOM scheme will be able to be used even
for the twist-2 operators. Since the renormalization constants are not yet evaluated at the finer lattice
spacing, we simply evaluate two ratios of gA/gV and 〈x〉u−d/〈x〉∆u−∆d, which are not renormalized
in the continuum limit. Therefore, we can compare our results of the ratios with the experimental
results without the renormalization constants. As for the case of gA/gV , both results at two lattice
spacings well reproduce the experimental value within their statistical errors. This indicates that the
lattice discretization uncertainties on the renormalized value of gA are smaller than their statistical
uncertainty of less than 2%. As in the case of gA/gV , the results of 〈x〉u−d/〈x〉∆u−∆d obtained from
the 1284 and 1604 lattice ensembles reproduce the experimental data, though the large systematic
error remains for the preliminary result of obtained from the 1604 lattice ensemble.

Acknowledgement

Numerical calculations in this work were performed on Oakforest-PACS in Joint Center for
Advanced High Performance Computing (JCAHPC) and Cygnus in Center for Computational Sci-
ences at University of Tsukuba under Multidiscilinary Cooperative Research Program of Center for

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
0
4

The lower moments of nucleon structure functions.... Ryutaro Tsuji

Computational Sciences, University of Tsukuba, and Wisteria/BDEC-01 in the Information Tech-
nology Center, The University of Tokyo. This research also used computational resources through
the HPCI System Research Projects (Project ID: hp170022, hp180051, hp180072, hp180126,
hp190025, hp190081, hp200062, hp200188, hp210088) provided by Information Technology Cen-
ter of the University of Tokyo and RIKEN Center for Computational Science (R-CCS). The cal-
culation employed OpenQCD system1. This work was supported in part by Grants-in-Aid for
Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology(Nos.
18K03605, 19H01892).

References

[1] O. Turkot [H1 and ZEUS], PoS LeptonPhoton2019 (2019), 077.

[2] H. -W. Lin et a., Phys. Rev. Lett. 120 (2018) 12502.

[3] R. Abdul Khalek et al., arXiv:2103.05419v2(2021).

[4] M. Constantinou et al., arXiv:2006.08636v2(2020).

[5] H.-W. Lin et al., Prog. Part. Nucl. Phys. 100 (2018), 107-160

[6] B. Märkisch et al., Phys. Rev. Lett. 122 (2019) 242501, 1812.04666.

[7] Y. Aoki et al., Phys. Rev. D 82 (2010) 014501.

[8] A. Adbel-Rehim et al., Phys. Rev. D 92 (2015) 114513.

[9] G. Martinelli et al., Nucl. Phys. B 445 (1995) 81.

[10] Y. Aoki, PoS LATTICE 2009, 012(2010).

[11] Y. Aoki, P. A. Boyle, N. H. Christ et al., Phys. Rev. D 78 (2008) 054510.

[12] P. Boucaud et al., Phys. Rev. D 74 (2006) 034505.

[13] Y. Iwasaki, (2011), UTHEP-118, arXiv:1111.7054 [hep-lat].

[14] K. I. Ishikawa et al., Phys. Rev. D 99 (2019) 014504.

[15] K. I. Ishikawa et al., Phys. Rev. D 100 (2019) 094502.

[16] E. Shintani et al., Phys. Rev. D 94 (2019) 014510. (Erratum; Phys. Rev. D 102 (2020) 019902.)

[17] E. Shintani and Y. Kuramashi, Phys. Rev. D 100 (2019) 034517.

[18] G. von Hippel, T. D. Rae, E. Shintani, and H. Wittig, Nucl. Phys. B 914 (2017) 138.

[19] K. I. Ishikawa et al. [PACS], PoS LATTICE2015 (2016) 271.

[20] N. Tsukamoto et al., PoS LATTICE2019 (2020), 132.
1http://luscher.web.cern.ch/luscher/openQCD/

9


