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1. Introduction

The fate of hadrons as the temperature of the hadron gas is increased and the transition to the
quark-gluon plasma is made, has been a topic of longstanding interest. In principle, nonperturbative
simulations of lattice QCD should provide theoretical insight, but the analysis is complicated due to
the difficulty in defining the notions of ground state and mass at nonzero temperature. This can be
resolved by considering hadronic spectral functions, which include thermal mass shifts and widths,
but their construction is hindered by the finite number of points in the Euclidean time direction
available for the required analytic continuation. Nevertheless, interesting results for light and
strange baryons have been obtained [1, 2], shedding light on parity doubling and chiral symmetry
restoration.

In this contribution, we present the temperature dependence of masses of mesons. We take
the following conservative approach: we first determine the masses of the ground states in various
channels at low temperature, using a regression analysis based on the one presented in Ref. [3].
We aim to minimise possible bias by performing variational fits and avoiding cherry-picking.
Subsequently we extend this analysis to nonzero temperature and attempt to systematically generate
comparable estimates of ground state masses for all temperatures. While we expect this approach
to break down at higher temperatures and definitely in the quark-gluon plasma phase, where light
mesons no longer exist, we demonstrate that it nevertheless provides insight into thermal effects.
In particular, we study the restoration of the SU(2)� symmetry as the temperature increases, by
comparing the masses of the d(770) and 01(1260). Finally, we identify limits to this approach by
contrasting results obtained with local and smeared sources at high temperature.

2. Lattice setup and mesonic correlation functions

We use the anisotropic FASTSUM ensembles described in detail in Ref. [7], with # 5 = 2 + 1
flavours of clover-improvedWilson fermions. The strange quark mass is at its physical value [4], but
the light quarks are heavier than in nature. Relevant parameters are given in Table 1. In the fixed-
scale approach, the temperature is varied by changing #g , using the relation ) = 1/(#g0g).The
lowest (highest) temperature we study here is ) = 47 (300) MeV, obtained using #g = 128 (20).

1/0g [GeV] 0B [fm] b = 0B/0g #B "c [MeV] "c! )2 [MeV]
5.997(34) 0.01136(6) 3.453(6) 32 236(2) 4.36 164(2)

Table 1: Parameters relevant for the ensembles: 0g (0B) is the temporal (spatial) lattice spacing; b is the
renormalised anisotropy; #B is the number of points in the spatial direction; "c is the mass of the pion; )2
is the critical temperature, computed using the inflection point of the renormalised chiral condensate [7].

Our analysis focuses on mesonic correlation functions. The mesonic operators are $ (0) im-
proved through the Symanzik improvement scheme. In the correlation functions the source and
sink operators are identical. As we are interested in thermal observables, correlation functions are
expressed in a time-momentum representation, with the external momentum set to zero. Conse-
quently, our correlators only depend on Euclidean lattice time g, � (g) with g/0g ∈ [0, #g). In the
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Channel pseudoscalar vector axial-vector scalar
Operator W5 W` W`W5 11
�%� 0−+ 1−− 1++ 0++

Table 2: Channels available in our simulations, indicated by the Dirac matrix and the �%� quantum number.

simulations, three quark fields are present: D, 3 and B, with D and 3 being degenerate. We also have
access to observables containing charm (2) [5, 6], which is however not included in the fermion
determinant. As a result, we can simulate six flavour combinations: DD, DB, D2, BB, B2 and 22. We
do not calculate disconnected contributions, therefore, we only have access to non-singlet flavour
observables.

We have analysed a number of channels: pseudoscalar, vector, axial vector and scalar, see
Table 2. Here we report results for the first three channels only. Besides the specification of the
flavour combination and operator used, we can choose the type of source used in the inversion of
the Dirac operator. We have used local and smeared (using Gaussian smearing with parameters
# = 100, ^ = 5.5) sources. The latter are designed to have better overlap with the ground state
at zero temperature, but in principle both types should lead to the same ground state mass. We
construct correlation functions in which either local sources were used for both quark propagators,
and denote these with ;-;, or smeared sources, denoted with B-B. As a result, we have two different
estimates for the same mesonic correlator, for each channel and flavour combination.

3. Regression analysis

3.1 Spectral decomposition

Every parametric regression analysis needs a model. Here we start from the simplest Ansatz:
a sum of isolated states, characterised by a mass "B, amplitude �B and vanishing width (i.e. simple
poles in the mesonic correlator, or delta-functions in the corresponding spectral function). The
correlator then takes the form

� (g) =
∞∑
B=0

�B cosh ["B (g − 1/(2))] . (1)

In principle, we can fit our estimates of the correlation function to the equation above to extract the
masses "B and amplitudes �B of the different states. We refer to the state with the lowest mass as
the ground state; extracting its mass is our main objective. Provided "0 � "B≠0, the ground state
dominates at large times g > 0, which at nonzero temperature is g/0g ' #g/2. It is noted that
Eq. (1) is only expected to be valid in the low-temperature limit, ) → 0. Once the temperature is
increased, the validity of the model starts being questionable, due to in-medium effects.

To perform a regression analysis, we assume that the correlation functions are, at all tempera-
tures, described by the model

� (g) = 5 (g; \, #tr) + D, (2)

where the Ansatz, 5 , is a truncation of Eq. (1) at the order #tr. It depends on the parameters
\ = {�B, "B |B = 0, . . . , #tr}, which need to be found; the parameters �B and "B correspond to the
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ones in Eq. (1). The error term, D, is assumed normally distributed and conditionally independent
of g.

To set up notation, from now on �̂ (g) is our estimate of the correlation function, which is
estimated by averaging over all configurations at a fixed temperature. Note that the regression
analysis presented in this section is based on the procedure presented in Ref. [3].

3.2 Sources of problems in a regression analysis

Performing a regression analysis is a nontrivial task. Here we briefly review some of the
problems present in the analysis and discuss solutions to mitigate them.

Correlation function data is heavily correlated – The correlation function estimate at different
times g is heavily correlated, hence the data includes less information than expected. The source of
this autocorrelation is the computation of the propagators; the entire ensemble is used to produce
an estimate of the correlation function at all g. Consequently, the samples are correlated at different
g, which violates the usual assumption of independence in the errors in Eq. (2).

Not taking into account the correlation in the regression analysis tends to underestimate the
uncertainty in the parameter estimates and even produce wrong results. One way to take correlation
into account is by using the so-called correlated maximum likelihood estimate. This estimate can
be derived by maximising the likelihood function of the intersection of # correlated normally
distributed random variables. The problem is equivalent to minimising the following objective
function:

j2 =
[
�̂ − 5 (g; \)

]
 −1 [

�̂ − 5 (g; \)
])
, (3)

 being the covariance matrix of the error term, which can be estimated using the correlation
function estimate �̂ (g). Minimising Eq. (3) tends to be unstable; starting at different initial
parameters leads to significantly dissimilar results.

One can always try to break down the correlation by producing a bootstrap estimate of the data.
This can be done by selecting different random samples from all configurations available for each
time g. This procedure can produce biased estimates of �̂ (g) [? ].

Multistate fits are a must – As explained before, the lowest state tends to dominate the correlation
function at large g. However, without having information about the values of the masses of
the excited states, we do not know when those states start becoming relevant as g ↘ 0. As a
consequence, if only one-state fits are produced, then bias is included in the result. Hence one
should always try including as many states as possible in the model.

Varying the fit windows – The fit window used in the regression should be varied to produce
as many estimates as possible of the ground state mass. Varying the fit window reduces the bias
included by manually selecting a region of fit. For the remainder of the contribution, we define a fit
window �, (g0, g 5 ) as all times g included in the interval [g0, g 5 ]. We fix g 5 /0g = #g/2.

Parameter initialisation – Minimising Eq. (3) using initial parameters that are close to the “true”
values is crucial to avoid instabilities. We produce our initial parameters using a combination of
effective mass computations and fits to a different number of states. The mass of the =th state can
be estimated using the effective mass if knowledge about the parameters of the lighter = − 1 states
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Figure 1: Ground state mass of the local-local pion correlation function (W5, DD) as a function of the starting
time g0 defining the fit window used in the regression; the fit windows used contain all points in the region
[g0, #g/2]. The error bars correspond to the estimate of the ground state mass at a given time window. In
some cases the error bars are too small to be visible. Error bars change rapidly in regions where additional
excited states become relevant. The line corresponds to the median mass using all fit windows; this result is
independent of the fit window used. The temperature of the system is ) = 46 MeV (#g = 128).

is available. To do so, we subtract the model composed of the = − 1 states from the correlation
function estimate, eliminating those contributions from the correlation function; see Eq. (1). We
can use this procedure iteratively to estimate the masses of the wanted excited states. Afterwards,
one should always fit a one-state model to the subtracted correlation function to produce a more
robust estimate of the initial parameter. As errors propagate, this technique is less reliable for higher
order excited states.

3.3 Regression at fixed fit window and extraction of the final ground state mass

Wewill now explain how regression is carried out using a fixed fit window. As we do not know
when excited states become relevant, we should include models with a different number of states.
For each of the models, we can produce an estimate of the ground state mass. At the end, we need
to select the best estimate of the ground state mass at the current fit window. To obtain this value,
we use the so-called corrected Akaike Information Criterion (AICc) [9, 10]. The ���2 can be used
to measure the relative likelihood of the data description between two models; the model with the
lowest ���2 is the most likely to describe the data. It can be defined using

���2 = #\ − log( !̂) +
#2
\
+ #\

#fw − #\ − 1
, (4)

where #\ is the number of parameters in the model, !̂ is the likelihood function evaluated at the
estimated parameters and #fw is the number of points included in the fit.

Using the ���2, we can compute the relative likelihood between two models <1 and <2,

; (<1, <2) = exp
(
−1

2
[���2(<1) − ���2(<2)]

)
. (5)

This quantity measures how likely <2 is to describe the data compared to <1. Provided we set <1
to the model with the lowest ���2 among all models available, then we can use the values of ; to
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Figure 2: Temperature dependence of the ground state masses in the pseudoscalar (W5) and the vector (W`)
channels. The vertical gray line corresponds to the pseudocritical temperature )2 .

measure the relative model quality. We can utilise this information to compute the best estimate
of the mass at the given time window by calculating the weighted average of all masses; we use ;
as weights. This technique allows us to promote the influence of high-quality models in our result
while avoiding manually discarding any models. Finally, the error in the weighted mass can be
extracted using a bootstrap analysis.

For each fit window used in the fit, we collect an estimate of the ground mass "0(�,). Our
final estimate of the mass, independent of the fit window, is extracted using the median of all
"0(�,). We use the median as it is a robust statistic; outliers tend to be present due to the unstable
nature of correlated fits. Confidence intervals on the median estimation can be constructed using
bootstrap; confidence intervals are not guaranteed to be symmetric.

4. Results

Wewill now present some results for the ground state masses for different states. Fig. 2 contains
the temperature dependence of the different flavour combinations in the pseudoscalar and vector
channels. Two different trends can be seen. In the low-temperature regime, where the system is
in the hadronic phase, the masses show minimal temperature dependence. For the light quarks,
some dependence can be seen in the vector channel. On the other hand, above the pseudocritical
temperature ()2 ∼ 164 MeV), which is estimated using the inflection point of the chiral condensate,
where the system is a quark-gluon plasma, the masses vary with the temperature, when the results
are taken at face value. This effect is stronger in the light sector (DD, DB and BB). For the heavier
sector, involving charm, the effect is milder and the charmonium 22 states are almost unaffected
by thermal effects. In the high-temperature regime, the masses of the light mesons increase until
becoming degenerate. The mass increase and the degeneration of the light flavour combinations
can be explained by thermal effects: the inherent light-quark-energy scales are smaller than the
temperature scale and the system is dominated by thermal excitations. Note that the uncertainties
in the estimates grow with temperature due to the combined fact that the model used in the fit is
not expected to be accurate as the temperature increases (to be discussed next) and the fact that the
number of points available in the fit decreases with ) .
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Figure 3: Temperature dependence of two (* (2)� related channels: vector – d(770) – and axial-vector –
01 (1260). The estimate of the correlation function in the axial-vector channel at the lowest temperature is
remarkably noisy, affecting the confidence intervals.

The apparent presence of thermal effects for light mesons in the high-temperature regime leads
to a natural question: is the spectral decomposition underpinning Eq. (1) valid at high )? The
answer is clearly no: at high temperature, thermal effects, collective excitations and screening are
expected to impact mesonic correlators. Light meson states will disappear (deconfinement) and
although states involving charm may survive in the quark-gluon plasma, they are expected to be
no longer describable by delta functions/simple poles. The inability of Eq. (1) to represent the
high-temperature regime generates a problem: the quantities extracted in this region cannot be
interpreted as masses. This problem is more severe in the light sector, where thermal effects are
more dominant. Nevertheless, the results contain meaningful information about the status of the
system in the sense that degeneracies and symmetry restoration can be studied from the outcome
of the regression analysis, as it gives information on the underlying correlators, irrespective of the
interpretation as ground state mass.

We demonstrate this in more detail in the context of SU(2)� chiral symmetry restoration and
the temperature dependence of states related by this symmetry. Here we discuss the vector and
axial-vector channels in the lightest flavour combination, connected to physical states d(770) and
01(1260) respectively, see Fig. 3. At low temperature, the states are non-degenerate. However, at
higher temperature, they are expected to become degenerate as the SU(2)� symmetry is restored.
The results of our simulations in Fig. 3 appear to confirm this expectation, with the degeneracy
emerging at or near the transition temperature.

Finally, in Fig. 4 we present some results comparing the masses extracted using different types
of sources: local and smeared ones. Smearing is designed to decouple the excited states in a
correlation function. As a consequence, the ground state signal is enhanced, thus leading to a better
estimate of the ground state mass. Where the ground state is well-defined, local and smeared ground
state mass estimates should be equal. In the hadronic phase, our results indeed are comparable.
However, in the deconfined phase the estimates are no longer equal. The implication is that the
single-pole Ansatz given in Eq. (1) is not valid and the ground state is no longer present. The larger
errors at high temperature are another indication the fits are no longer working.
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Figure 4: Temperature dependence of the difference between the ground state masses extracted using
local and smeared sources, " ;−;

0 − "B−B
0 , in the pseudoscalar (W5) and vector (W`) channels for all flavour

combinations.

5. Conclusions

The regression analysis presented allows the estimation of ground state masses in a systematic
manner. However, as stated before, these masses are not reliable at all temperatures. In the hadronic
phase, the Ansatz consisting of a sum of simple poles, see Eq. (1), is sufficient to obtain reliable
estimates. A minimal temperature dependence of the masses in this regime is observed. In contrast,
as the temperature increases, thermal effects dominate and Eq. (1) is no longer valid. More complex
models and algorithms would be needed to fully capture the information present in the correlation
functions at high temperature, reconstructing e.g. the spectral functions directly. Although the
approach used here is not completely accurate, pushing the boundaries of this established method is
not useless. Information about degeneracies and symmetry restoration at the level of the correlation
functions can be extracted using simple regression, and those results can be used as a firm ground
on which more complex analysis tools are built.

A remarkable finding of our analysis is the degeneracy of SU(2)� related states. Our results
confirm the non-degeneracy of the d(770) and the 01(1260) states in the hadronic phase. As
the temperature increases, the states get closer and become degenerate at or around the transition
temperature to the quark-gluon plasma and remain degenerate at higher temperatures.

As a final important exercise, we compared correlators obtained using local and smeared
sources. An agreement between the extracted ground state masses provides an important boost for
the validity of the approach. This is observed in the hadronic phase. On the other hand, likely
reasons for a discrepancy at high temperature are that the ground state is no longer given by a
simple pole or no longer clearly discernible, due to thermal effects and/or deconfinement. This was
seen in the quark-gluon plasma, in all flavour combinations and channels studied. This leaves the
question of the impact of smearing at high temperature; further research on the effects of smearing
on high-temperature observables is therefore needed.
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