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RIKEN-BNL-Columbia (RBC) and UKQCD collaborations have been jointly generating dy-
namical 2+1-flavor domain-wall fermions (DWF) numerical lattice-QCD ensembles for over a
decade now [1–10]. We have been working at essentially physical mass for a while [9, 10].

We have used some of these DWF ensembles for studying nucleon [11–25]. We found deficit
[11] in calculated isovector axial charge, 𝑔𝐴, in comparison with its experimental value [26]. As
we refined our analysis with lighter-mass ensembles (see Fig. 1) about ten percent deficit of the
calculated results with pion mass from about 420 MeV to 170 MeV had not moved much [14–
18, 20–22, 25]. This was confirmed by almost all other calculations at similar lattice cuts off and
quark mass [27–31]. Since then more calculations at almost physical mass have been conducted,
bringing the calculated values to closer to the experiment [28, 31–34], sometimes covering the
experimental value within relatively large statistical and systematic errors.

However our unitary DWF calculations with better chiral and flavor symmetries observe some
deficit with much smaller statistical errors: statistiical significance of these results range from three
to five standard deviations dependent on renormalization methods [23, 24].

As the corresponding vector charge calculation suggests possible contamination from near by
excited states [23, 24], in contrast to earlier DWF calculations that did not find any evidence for
such contamination [25], the form factor calculations presented here can shed some light on this
possible contamination from excited states [35, 36].
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Figure 1: The ratio, 𝑔𝐴/𝑔𝑉 , of nucleon isovector axial charge, 𝑔𝐴, to vector charge, 𝑔𝑉 , calculated
on successive RBC+UKQCD 2+1-flavor dynamical DWF ensembles with pion mass from 416.4(1.2) and
329.4(1.3) MeV (two righter most points), 249.4(3) and 172.3(3) MeV (two middle points), and at essentially
physical mass of 139.2(2) MeV (two left points just below the experiment), compared with the experimental
value (left most). Earlier and heavier four points show about ten percent deficit from the experiment which
agreed with almost all other lattice numerical calculations at similar mass and cut off. Though the physical
mass result approaches the experiment, we still see significant deficit.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
2
9

DWF nucleon form factors Shigemi Ohta

The results presented here were calculated using the “48I” 483 × 96 2+1-flavor dynamical
Möbius DWF ensemble at physical mass with Iwasaki gauge action of gauge coupling, 𝛽 = 2.13, or
of lattice cut off of 𝑎−1 = 1.730(4) GeV, jointly generated by the RBC and UKQCD Collaborations
[9]. In total 130 configurations, separated by 20 MD trajectories in the range of trajectory number
620 to 980, and by 10 MD trajectories in the range of trajectory number from 990 to 2160, except
the missing 1050, 1070, 1150, 1170, 1250, 1270, and 1470, are used. Each configuration is deflated
with 2000 low Dirac eigenvalues [37]. The “AMA” statistics trick [38], with 44 = 256 AMA sloppy
samples unbiased by 4 precision ones from each configuration, is used. Gauge-invariant Gaussian
smearing [39, 40] with similar parameters as in the past RBC nucleon structure calculations is
applied to nucleon source and sink, separated by 8 ≤ 𝑇 ≤ 12 in time.

We obtained a nucleon mass estimate of 947(6) MeV [23, 24]. In Fig. 2 we present the calculated
nucleon mass along with four earlier RBC+UKQCD calculations. Though the calculations were
done with different gauge actions and quark mass and are yet to be taken to the respective continuum
limits, we see a convex upward quark-mass dependence that trends to the physical nucleon mass.
This likely is a result of much expected chiral logarithm, 𝑚2

𝜋 log𝑚2
𝜋 ∼ 𝑚𝑢+𝑑 log𝑚𝑢+𝑑 . Note such

chiral effects can affect nucleon charges and couplings as well as the mass through for example
Goldberger-Treiman relation, 𝑚𝑁 𝑔𝐴 ∝ 𝑔𝜋𝑁 𝑁 𝑓𝜋 [41].

We are presently trying to extract nucleon isovector form factors, which are experimentally
measured in elastic scatterings off, or 𝛽 decay of, or muon capture by nucleons:

〈𝑝 |𝑉+
𝜇 (𝑥) |𝑛〉 = 𝑢̄𝑝

[
𝛾𝜇𝐹1(𝑞2) − 𝑖𝜎𝜇𝜆𝑞𝜆

𝐹2(𝑞2)
2𝑚𝑁

]
𝑢𝑛𝑒

𝑖𝑞 ·𝑥 ,
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Figure 2: Calculated nucleon mass, 𝑚𝑁 , plotted against pion mass squared, 𝑚2
𝜋 , in physical units, from

recent RBC+UKQCD 2+1-flavor dynamical numerical lattice QCD ensembles. The calculated mass appears
convex upwards, suggesting possible chiral logarithm.
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〈𝑝 |𝐴+
𝜇 (𝑥) |𝑛〉 = 𝑢̄𝑝

[
𝛾𝜇𝛾5𝐹𝐴(𝑞2) + 𝛾5𝑞𝜇

𝐹𝑃 (𝑞2)
2𝑚𝑁

]
𝑢𝑛𝑒

𝑖𝑞 ·𝑥 .

Some alternative combinations of these form factors, such as 𝐹𝑉 = 𝐹1, 𝐹𝑇 = 𝐹2;𝐺𝐸 = 𝐹1 −
𝑞2

4𝑚2
𝑁

𝐹2, 𝐺𝑀 = 𝐹1 +𝐹2, also appear in the literature. They are related to various important nucleon

observables such as: mean-squared charge radii, 〈𝑟2
𝐸
〉, through the expansion of the vector form

factor, 𝐹1 = 𝐹1(0)−
1
6
〈𝑟2

𝐸〉𝑄2+ ..., in terms of momentum transfer squared,𝑄2 = |𝑞2 |, or anomalous
magnetic moment, 𝐹2(0), or isovector axial charge, 𝑔𝐴 = 𝐹𝐴(0) = 1.2754(13)𝑔𝑉 [26], of nucleon
that determines neutron life and nuclear 𝛽 strengths that in turn determines nuclear abundance.

We use the standard three-point to two-point correlator ratios to extract the form factors, the
details of which can be found in our earlier publications such as Ref. [12]: after appropriate
projections and normalization, we obtain the relevant plateaux between the nucleon source and sink
(Fig. 3). As in the earlier studies for isovector charges and couplings [23, 24] we use the source-sink
separation, 𝑇 , from 8 to 12.

The preliminary results shown in Fig. 3 are rather noisy even for the smallest finite momentum
transfer squared, 𝑄2 = 1 lattice unit. Though statistically not significant through the large noise,
the results from the shortest source-sink separation may be systematically lower than the others.
This could mean steeper slope momentum transfer squared, or larger mean-squared charge radius,
at shorter source-sink separation. Contamination from excited-state that is larger in mean-squared
charge radius than the ground state can cause such an effect.

Here again in isovector form factors, just like it would have in the cases of isovector charges
[23, 24], it would help to obtain more statistics to better understand their behaviors: Indeed doubling
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Figure 3: Nucleon isovector vector form factor 𝐹1 with one lattice unit of momentumn transfer squared,
𝑄2 = 1, plotted against source-sink separations, 𝑇 , of 8, 9, 10, 11, and 12 lattice units.
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the present statistics could clarify the question of excited-state contamination. Adding a couple of
shorter source-sink separations such as 𝑇 = 7 and 6 would be helpful too.

Doubling our statistics could resolve the question about possible excited-state contamination,
not only in the form factors presented here but also in the charges reported earlier. It would also
help to add a couple of more shorter source-sink separations such as 𝑇 = 7 and 6 to understand their
behaviors better. Given the present three to five standard-deviation statistical significance [23, 24],
the deficit in isovector axial charge, 𝑔𝐴, is likely to persist. If it does it would be interesting to study
the effects of isospin violation, both from the mass and electric charge differences.
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Sergey Syritsyn. The “48I” ensemble was generated using the IBM Blue Gene/Q (BG/Q) “Mira”
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the US DOE, on the “DiRAC” BG/Q system funded by the UK STFC in the Advanced Computing
Facility at the University of Edinburgh, and on the BG/Q machines at the Brookhaven National
Laboratory. The nucleon calculations were done using ALCF Mira. The author was partially
supported by Japan Society for the Promotion of Sciences, Kakenhi grant 15K05064. Part of the
work was conducted while the author was affiliated with RIKEN-BNL Research Center through
March 31, 2021.
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