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Bottomonium states are key probes for studies of the quark-gluon plasma (QGP) created in high-
energy nuclear collisions. Theoretical models of bottomonium productions in high-energy nuclear
collisions rely on the in-medium interactions between the bottom and antibottom quarks, which can
be characterized by real (VR(T,r)) and imaginary (VI (T,r)) potentials, as functions of temperature
and spatial separation. Recently, the masses and thermal widths of up to 3S and 2P bottomonium
states in QGP were calculated using lattice quantum chromodynamics (LQCD). Starting from
these LQCD results and through a novel application of deep neural network, here, we obtain
results for VR(T,r) and VI (T,r). The temperature dependence of VR(T,r) was found to be very
mild between T ≈ 0 − 330 MeV. Meanwhile, VI (T,r) shows a rapid increase with T and r , which
is much larger than the perturbation theory-based expectations.
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Figure 1: Flow chart of the potential reconstruction scheme — using generalized back-propagation to
optimize parameters in the deep neural networks coupled with a Schrödinger equation.

1. Introduction

In-medium modifications of quarkonium states are sensitive probes of the QGP produced in
high energy nuclear collisions [1, 2]. Sequential suppression patterns among the Υ(1S), Υ(2S)
and Υ(3S) states have been observed in heavy-ion collision experiments [3–6]. These experimen-
tal observations are understood in effective field theories (EFT), which naturally lead to an open
quantum system based treatment of both open and hidden bottom states in QGP (see [7] for a
recent review). If interactions between the color-singlet and color-octet states are neglected then
the pNRQCD reduces to a theoretical description of quarkonia solely based on a potential between
the heavy quark and antiquark. A potential based description allows studies of quarkonia by em-
ploying Schrödinger-type equations [8–11]. One-loop hard thermal loop (HTL) perturbative QCD
calculations [12, 13], and later on pNRQCD calculations [14, 15], show that at finite temperatures
heavy quark potential becomes complex with a nonvanishing imaginary part. However, it is difficult
to provide satisfactory descriptions of bound states arising out of strong interactions solely using
perturbative expansions and a nonperturbative treatment, such as the LQCD, is called for. In the
static limit, the heavy quark potential can be extracted from the spectral functions of the thermal
Wilson loop using nonperturbative LQCD calculations [16–19]. On the other hand, recent LQCD
studies have led to quantification of the masses, thermal widths, and Bethe–Salpeter amplitudes
(BSA) of up to 3S and 2P bottomonium states in QGP [20–22]. As we shall see later, one-loop
HTL motivated functional forms of VR(T,r) and VI (T,r) are not compatible with the recent LQCD
results. This observation calls for a model-independent nonperturbative extraction of the in-medium
heavy quark potential.

In our recent work [23], we have developed a model-independent DNN-based method and
determine the r and T-dependence of the in-medium heavy quark potential starting from the LQCD
results [21] for the masses and thermal widths of up to 3S and 2P bottomonium states at various
temperatures. The underlying idea is as follows: At a fixed T , various bottomonium states differ
in sizes and their wavefunctions concentrate on different distances. Knowledge of the masses
and thermal widths of multiple bottomonium states, thereby, provide constraints on not only the
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strength of the real and imaginary parts of the bottom-antibottom interactions in QGP but also its
r-dependence. Thus, LQCD results for the masses and thermal widths of multiple bottomonium
states at different temperature can be used to extract VR(T,r) and VI (T,r) and, presently, DNN is
probably the best tool achieve this in an unbiased fashion. According to the universal approximation
theorem [24, 25], DNN can generally provide an unbiased, yet flexible enough, parameterization
to approximate arbitrary functional relations. We exploited the DNNs to represent the real and
imaginary potentials,

VR(T,r) = VR,DNN(bR,WR;T,r) , VI (T,r) = VI ,DNN(bI ,W I ;T,r) , (1)

where b and W — called bias and weight, respectively — are the DNN parameters to be determined
by fitting the LQCD masses and thermal widths [21].

2. Methodology

In typical machine-learning problems, one usually knows some direct informations of the target
function — e.g., its value at discrete points — and is able to tune the DNN parameters by directly
compare its output to the known knowledge. In our network, however, we cannot compare Eq. (1)
to the LQCD masses and thermal widths and fix the parameters. There is an extra step to map the
DNN output (potential) to observables (masses and thermal widths) — the reduced complex-valued
two-body time-independent Schrödinger equation,1

− ∇2

mb
ψn +

[
VR(T,r) + i · VI (T,r)

]
ψn = En ψn , (2)

where the wavefunction ψn and the energy eigenvalues En for in-medium bottomonia are complex-
valued. Here, VI (T = 0,r) = 0, Re[En] = mn − 2mb and Im[En] = −Γn, where mn and Γn are the
mass and thermal width of the nth bottomonium state, respectively. We solved Eq. (2) with potential
provided by DNN (1) and obtain the masses and thermal widths. The DNN parameters (b(l)i and
W (l)

i j ) are tuned by minimizing the cost function

J =
λ

2

∑
l,i

(
b(l)i

)2
+
λ

2

∑
l,i, j

(
W (l)

i j

)2
+

1
2

∑
T ,n

(
mT ,n − mLQCD

T ,n

δmLQCD
T ,n

)2

+

(
ΓT ,n − ΓLQCD

T ,n

δΓLQCD
T ,n

)2

, (3)

Here, the ∝ λ terms are regularizers in DNN to avoid over-fitting. The summation runs over
six temperature points, T ∈ {0,151,173,199,251,334} MeV, and five bottomonium states, n ∈
{1S,2S,3S,1P,2P} and the LQCD values were taken from Ref. [21]. We used gradient descent with
Back-Propagation optimization technique, which is based on the derivatives of the cost function
with respect to the network parameters. We overcame the challenge of gradients evaluation of
such implicit functions through perturbative solution of the Schrödinger equation with respect to
small change of V(T,r). Moreover, we invoked Bayesian inference for uncertainty quantification,
whereby the posterior distribution of the network parameters was evaluated. In Fig. 1 we show the

1By taking the Cornell potential, we can well reproduce the vacuum masses of up to 3S and 2P bottomonium
states [26] and the corresponding vacuum BSA obtained from LQCD calculation [22], (see [23] for more details).
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Figure 2: In-medium mass shifts (left) and the thermal widths (right) of different bottomonium states obtained
from fits to LQCD results [21] (lines and shaded bands) using HTL functional forms [27] (open symbols) and
DNN based optimization (filled circle). The points are shifted horizontally for better visualization. Υ(1S),
χb0 (1P), Υ(2S), χb0 (2P) and Υ(3S) states are represented by red, orange, green, blue, and purple symbols,
respectively.

flow chart of our methodology of the potential reconstruction with DNNs coupled to a Schrödinger
equation. To the best of our knowledge, the current method is developed for the first time here.
More details on the method is provided in [23], along with a closure test to justify our methodology
and assess its reliability.

3. Results

We begin with pointing out the inadequacy of weak-coupling motivated functional form of the
potential to consistently describe the LQCD masses and thermal widths. We chose the functional
form proposed in Ref. [27], which incorporates one-loop HTL based functional forms of VI and
of color-electric screening, in addition to a vacuum potential satisfying Gauss’s law. Taking this
functional form for the potential, we fix α, σ, and B by their vacuum values, and tune µD at different
temperatures to fit the finite-temperature bottomonia masses and widths. As shown by the open
squares in Fig. 2, one-loop HTL motivated functional form of VI and color-electric screening in VR

fail to simultaneously reproduce the LQCD results for the mass shifts and the thermal widths of
bottomonium. Even if allowing an extra magnification factor for VI , one would still miss the state-
dependence of the thermal width (see open diamonds which take magnification factor to be four).
The failure of the only known analytic form to describe the LQCD results necessitates a model-
independent extraction of V(T,r) using an adequate unbiased parameterization. We devised the
above outlined method by coupling Schrödinger equation with DNNs and achieved good agreement
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Figure 3: The DNN reconstructed real (Left) and imaginary (Middle) parts of the heavy quark potential
at temperatures T = 151(purple), 173(blue), 199(green), 251(orange), and 334 MeV(red). The uncertainty
bands represent the 68%(1σ) confident region. Right panel is the same as Middle, but for x- and y-axis
scaled by temperature T .

with the LQCD results [21] (see solid symbols in Fig. 2).

The T- and r-dependence of the extracted real and imaginary potentials are shown in Fig. 3.
We see signs that with increasing temperature VR(T,r) becomes flatter at large r , as expected from
color screening effect. However, the temperature dependence of VR(T,r) is very mild between
T ≈ 150 − 330 MeV, and closely approximating its vacuum counterpart. In the same temperature
range, we observed that VI (T,r) monotonically increases both with temperature and distance.
Whereas VI varies a lot as temperature changes, the scaled imaginary potential, VI/T as function of
r × T , is insensitive to the change of temperature, (see Right panel of Fig. 3).

The heavy quark potential obtained here is based on LQCD calculations of bottomonium state
using 2+1 flavor dynamical gauge field background with nearly physical values of up, down, and
strange quark masses. Our results for the heavy quark potential is qualitatively different from the
static quark potentials extracted from the thermal spectral functions [16–19]. Unlike the previous
studies, the VR obtained in this work show very little signs of color-electric Debye screening for
r ≲ 1 fm for the entire temperature range T ∈ [0,334] MeV. The VI here is much larger in magnitude
and increases more rapidly both with T and r than the one-loop HTL motivated extractions. On
the other hand, it is reassuring that the preliminary results on the static quark potential from very
recent LQCD calculations and without using the one-loop HTL motivated forms are quite similar
to the potential obtained here [28].

Finally, we compare the finite temperature wave-functions with the corresponding Bethe–
Salpeter(BS) amplitudes from the lattice QCD calculation [22], which is obtained consistently with
the masses and widths [21]. With such complementary information, the comparison serve as an
independent test of the finite temperature potential. In Fig. 4 (Left), we compare the real part
of wave-functions at different temperatures and observe mild temperature dependence of the BS
amplitudes, while the wave-functions are obviously different at higher temperature. As noted in
Ref. [22], due their non-trivial Euclidean-time dependence, the BSAs at T > 0 fail to capture the
thermal broadening of the states, rather resemble the vacuum wave-functions. Consequently, we
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Figure 4: (left) Comparison of the real part of finite temperature wave-functions(curves) and Bethe–Salpeter
amplitudes(symbol). Results at T=151, 251, and 334 MeV are respectively colored in blue, green, and red.
(Right) Same as Left but for “pseudo-wave-function” obtained only from the real potential. See text for
explanation.

solve the “pseudo-wave-functions”, denoted as ϕ, according to the real potential in Fig. 3,

− ∇2

mb
ϕn + VR(T,r)ϕn = Ẽnϕn, (4)

and compare them with the BS amplitude in Fig. 4 (Right), and find excellent agreement especially
regarding the large-r tail at different temperatures. Such comparison independently verifies the
real part of the interaction potential at finite temperature. In particular, the tail behavior of the
wave-functions is sensitive to the flatness of the potential at r ≳ 0.5 fm. The excellent agreement
shown in Fig. 4 (Right), especially for the 3S state at all temperatures, confirms the weak screening
effect observed in the real part of the potential.

4. Conclusion

In this work, the in-medium heavy quark potential with a bias-free DNN representation is
determined from the recently obtained LQCD results [21] for the masses and thermal widths of up
to 3S and 2P bottomonium states in QGP. By coupling the Schrödinger equation to the DNN, we
introduced a novel method for unbiased extractions of the real and imaginary parts of the heavy
quark potential, and invoked Bayesian inference to quantify the potential uncertainties in a non-local
fashion. We obtained VR(T,r) and VI (T,r) for r ≲ 1 fm and T ≲ 330 MeV. The VR(T,r) has very
mild T dependence and closely resembles the vacuum potential. On the other hand, VI (T,r) is
large and rises rapidly with T and r . These results are qualitatively different from the static quark
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potential obtained using one-loop HTL perturbative calculations. It would be very interesting to see
the phenomenological consequences of this heavy quark potential, model-independently extracted
from the non-perturbative LQCD calculations.

We end by discussing the possible model-dependence of our results. As far as we can tell,
there is no bias or model-dependence in the potential extraction method, thus the only possible
dependence comes from the prior used in the LQCD calculation of masses and thermal widths,
which is not possible to avoid. We look forward to perform our potential extraction method to more
upcoming available LQCD results of masses and thermal widths for ground states and excitations.
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