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1. Introduction

Here, we present technical details on how to do a deep learning analysis on low non-zero modes
for staggered Dirac operators. This work is a follow-up paper on our previous papers: Ref. [1–4].

2. Staggered Dirac eigenstate

Here, we adopt the same notation as in Ref. [4]. Staggered Dirac operator, 𝐷𝑠, is anti-Hermitian
(𝐷†𝑠 = −𝐷𝑠) and its eigenvalues are pure imaginary.

𝐷𝑠 | 𝑓𝑖〉 = 𝑖𝜆𝑖 | 𝑓𝑖〉 (1)

where 𝜆𝑖 is a real eigenvalue. Here, the eigenstates are normalized such that 〈 𝑓𝑖 | 𝑓𝑘〉 = 𝛿𝑖𝑘 . Under
conserved 𝑈 (1)𝐴 axial transformation Γ𝜖 , Dirac operator transforms into its Hermitian conjugate,

Γ𝜖𝐷𝑠Γ𝜖 = 𝐷†𝑠 = −𝐷𝑠 . (2)

And an eigenstate | 𝑓𝑖〉 is related with its parity partner | 𝑓−𝑖〉 as follows,

𝐷𝑠Γ𝜖 | 𝑓𝑖〉 = −𝑖𝜆𝑖Γ𝜖 | 𝑓𝑖〉, (3)
𝐷𝑠 | 𝑓−𝑖〉 = −𝑖𝜆𝑖 | 𝑓−𝑖〉. (4)

Hence,

Γ𝜖 | 𝑓𝑖〉 = 𝑒𝑖 𝜃 | 𝑓−𝑖〉 ←→ Γ𝜖 | 𝑓−𝑖〉 = 𝑒−𝑖 𝜃 | 𝑓+𝑖〉. (5)

The eigenvectors can be classified into two categories: one is a set of zero modes and the other is
a set of non-zero modes. At the finite lattice spacing, there is no exact zero mode (𝜆𝑖 = 0) with
staggered fermions [5]. Those eigenmodes which correspond to zero modes in the continuum, are
named “would-be zero modes”. For more details, refer to Ref. [4].

3. Kluberg-Stern method

In general, there are two independent methods to transcribe a continuum operator to its lattice
version using staggered fermions: one is the Golterman (Gol) method [6] and the other is the
Kluberg-Stern (Klu) method [7]. The Klu method has a number of advantages in the study on
staggered Dirac eigenvalue spectrum, compared with the Gol method, since it satisfies (a) recursion
relations, (b) uniqueness of chirality, and (c) Ward identities.

In the Klu method, a quark bilinear operator with spin 𝑆 and taste 𝑇 is

O𝑆×𝑇 (𝑥) ≡ 𝜒̄(𝑥𝐴) [𝛾𝑆 ⊗ 𝜉𝑇 ]𝐴𝐵𝜒(𝑥𝐵) = 𝜒̄(𝑥𝐴) (𝛾𝑆 ⊗ 𝜉𝑇 )𝐴𝐵𝑈𝐴𝐵𝜒(𝑥𝐵) (6)

where 𝜒 is a staggered quark field, 𝑥𝐴 = 2𝑥 + 𝐴, 𝑥 is the coordinate of a hypercube, and 𝐴𝜇, 𝐵𝜇 ∈
{0, 1}. Here, (𝛾𝑆 ⊗ 𝜉𝑇 )𝐴𝐵 =

1
4

Tr
(
𝛾
†
𝐴
𝛾𝑆𝛾𝐵𝛾

†
𝑇

)
. The 𝑈𝐴𝐵 is inserted to make the operator gauge-

invariant,

𝑈𝐴𝐵 ≡ P𝑆𝑈 (3)


∑︁
𝑝∈C

𝑉 (𝑥𝐴, 𝑥𝑝1)𝑉 (𝑥𝑝1 , 𝑥𝑝2) · · ·𝑉 (𝑥𝑝𝑛 , 𝑥𝐵)
 (7)
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where P𝑆𝑈 (3) is the 𝑆𝑈 (3) projection, C denotes the complete set of shortest paths from 𝑥𝐴 to 𝑥𝐵,
and 𝑉 (𝑥, 𝑦) is HYP-smeared fat link [8].1 The matrix elements for the chirality operator [𝛾5 ⊗ 1]
and the shift operator [1 ⊗ 𝜉5] are

Γ
𝑖,𝑘

5 = Γ5(𝜆𝑖 , 𝜆𝑘) = 〈 𝑓𝑖 | [𝛾5 ⊗ 1] | 𝑓𝑘〉 ≡
∑︁
𝑥,𝐴,𝐵

[ 𝑓𝑖 (𝑥𝐴)]†(𝛾5 ⊗ 1)𝐴,𝐵𝑈𝐴𝐵 𝑓𝑘 (𝑥𝐵), (8)

Ξ
𝑖,𝑘

5 = Ξ5(𝜆𝑖 , 𝜆𝑘) = 〈 𝑓𝑖 | [1 ⊗ 𝜉5] | 𝑓𝑘〉 ≡
∑︁
𝑥,𝐴,𝐵

[ 𝑓𝑖 (𝑥𝐴)]†(1 ⊗ 𝜉5)𝐴,𝐵𝑈𝐴𝐵 𝑓𝑘 (𝑥𝐵). (9)

Unlike the Gol operators, the Klu operators satisfy the following:

(a) recursion relations

[𝛾5 ⊗ 1]2𝑛+1 = [𝛾5 ⊗ 1], [𝛾5 ⊗ 1]2𝑛 = [1 ⊗ 1], (10)

(b) uniqueness of chirality, which is natural consequence of the above recursion relations,

(c) Ward identity,

Γ𝜖 = [𝛾5 ⊗ 𝜉5] = [𝛾5 ⊗ 1] [1 ⊗ 𝜉5] = [1 ⊗ 𝜉5] [𝛾5 ⊗ 1], (11)
Γ𝜖 [𝛾5 ⊗ 1] = [𝛾5 ⊗ 1]Γ𝜖 = [1 ⊗ 𝜉5], (12)
Γ𝜖 [1 ⊗ 𝜉5] = [1 ⊗ 𝜉5]Γ𝜖 = [𝛾5 ⊗ 1] . (13)

Using the Ward identity in Eqs. (12) and (13), we can derive the following results:

|Γ𝑖,𝑘

5 | = |Ξ
−𝑖,𝑘
5 | = |Ξ𝑖,−𝑘

5 | = |Γ−𝑖,−𝑘5 | = |Γ𝑘,𝑖

5 | = |Ξ
−𝑘,𝑖
5 | = |Ξ𝑘,−𝑖

5 | = |Γ−𝑘,−𝑖5 | . (14)

For more details on this, refer to Ref. [4]. Here, we choose |Γ𝑖,𝑘

5 | to study leakage patterns, because
|Ξ𝑖,𝑘

5 | is just a mirror image of |Γ𝑖,−𝑘
5 |.

4. Quartet structure

Let us describe the serial notation for Dirac eigenmodes. So far we have used a serial index 𝑖

for an eigenvalue 𝜆𝑖 which is assigned in ascending order such that 𝑖 < 𝑗 if 𝜆𝑖 < 𝜆 𝑗 . It is convenient
since we can use a compact notation such as Γ𝑖,𝑘

5 . Since the 𝑆𝑈 (4) taste symmetry breaking effect
is so small at 𝑎 ≠ 0, we can also introduce the quartet notation which reflects on the taste symmetry
as in Figure 1. Here, we adopt the same quartet notation as in Ref. [4]:

𝐷𝑠 | 𝑓 𝑗 ,𝑚〉 = 𝑖𝜆 𝑗 ,𝑚 | 𝑓 𝑗 ,𝑚〉 ≡ 𝑖𝜆 𝑗 ,𝑚 | 𝑗 , 𝑚〉 (15)

where 𝑗 is a quartet index and 𝑚 is the index of a quartet component (𝑚 = 1, 2, 3, 4). In the
continuum (𝑎 = 0), 𝜆 𝑗 ,𝑚 = 𝜆 𝑗 ,𝑛 for 𝑚 ≠ 𝑛 thanks to the 𝑆𝑈 (4) taste symmetry. But on the lattice
(𝑎 > 0), 𝜆 𝑗 ,𝑚 ≠ 𝜆 𝑗 ,𝑛 for 𝑚 ≠ 𝑛 as one can see in Fig. 1. The ono-to-one mapping between a serial
index 𝑖 and a quartet index ( 𝑗 , 𝑚) is given in Table 1 for topological charge 𝑄 = ±1. Here, note that
𝜆2𝑛−1 = −𝜆2𝑛 for 𝑛 > 0, and 𝜆 𝑗 ,𝑚 = −𝜆− 𝑗 ,𝑚.

We find a minute deviation between eigenvalues within a quartet, 𝜆 𝑗 ,𝑚 ≠ 𝜆 𝑗 ,𝑛 for 𝑚 ≠ 𝑛 since
the taste symmetry breaking is so tiny. We find that the size of taste symmetry breaking is only 7%
even for the smallest non-zero quartet as one can see in Fig. 2.

1Here, we assume that we use the HYP staggered action [8] for valence quarks.
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Figure 1: Staggered Dirac eigenvalue spectrum.

𝜆𝑖 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆7 𝜆9 𝜆11 𝜆6 𝜆8 𝜆10 𝜆12 · · ·
𝜆 𝑗 ,𝑚 𝜆0,1 𝜆0,2 𝜆0,3 𝜆0,4 𝜆+1,1 𝜆+1,2 𝜆+1,3 𝜆+1,4 𝜆−1,1 𝜆−1,2 𝜆−1,3 𝜆−1,4 · · ·
𝑖 1 2 3 4 5 7 9 11 6 8 10 12 · · ·

( 𝑗 , 𝑚) (0, 1) (0, 2) (0, 3) (0, 4) (+1, 1) (+1, 2) (+1, 3) (+1, 4) (−1, 1) (−1, 2) (−1, 3) (−1, 4) · · ·
type Z Z Z Z NZ NZ NZ NZ NZ NZ NZ NZ · · ·

Table 1: One-to-one correspondence between serial index 𝑖 and quartet index ( 𝑗 , 𝑚) for 𝑄 = ±1. Here, Z
(NZ) represents zero (non-zero) modes.

(a) A quartet structure (b) A quartet structure for the smallest non-zero mode.

Figure 2: Examples for the quartet structure.

parameters values
gluonic action Tree level Symanzik and tadpole improvement [9–11]

lattice geometry 204

𝑎 0.077(1) fm
𝛽 5.0

𝑁 𝑓 0 (quenched QCD)
number of gauge configurations 300

valence quarks HYP staggered fermions [8]

Table 2: Details on gauge configuration [12].

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
5
9

Deep learning study on the Dirac eigenvalue spectrum of staggered quarks Sunkyu Lee

Figure 3: An example of leakage patterns.

5. Leakage pattern

First, let us consider the continuum case (𝑎 = 0). A shift operator, which is also a generator
for the 𝑆𝑈 (4) taste symmetry, is

Ξ𝐹 = [1 ⊗ 𝜉𝐹 ] (16)

where 𝜉𝐹 ∈ {𝜉5, 𝜉𝜇, 𝜉𝜇5, 𝜉𝜇𝜈} (for 𝜇 ≠ 𝜈). Here, 𝜉𝜇 satisfies the Clifford algebra {𝜉𝜇, 𝜉𝜈} = 2𝛿𝜇𝜈 .
Since the taste symmetry is conserved, Ξ𝐹 commutes with staggered Dirac operator,

0 = 〈 𝑓𝑖 | [𝐷𝑠,Ξ𝐹 ] | 𝑓𝑘〉 = 𝑖(𝜆𝑖 − 𝜆𝑘) |Ξ𝑖,𝑘

𝐹
| . (17)

If 𝜆𝑖 ≠ 𝜆𝑘 , |Ξ𝑖,𝑘

𝐹
| = 〈 𝑓𝑖 |Ξ𝐹 | 𝑓𝑘〉 = 0. If 𝜆𝑖 = 𝜆𝑘 , |Ξ𝑖,𝑘

𝐹
| ≠ 0 is possible. |Ξ𝑖,𝑘

𝐹
|2 is a probability that

one eigenstate transforms into another by Ξ𝐹 . Hence, we call |Ξ𝑖,𝑘

𝐹
| the leakage parameter for the

Ξ𝐹 operator. Here, note that the leakage by Ξ𝐹 can occur only within a quartet. And among the set
of {Ξ𝐹 }, Ξ5 is especially important because it is related to Γ5 by the Ward identity in Eqs. (12) and
(13). Hence, |Γ 𝑗𝑚,− 𝑗𝑛

5 | is just a mirror image of |Ξ 𝑗𝑚, 𝑗𝑛

5 | for the non-zero modes ( 𝑗 ≠ 0). Therefore,
in the continuum (𝑎 = 0),

Γ
𝑗𝑚,ℓ𝑛

5 = 〈 𝑗 , 𝑚 |𝛾5 ⊗ 1|ℓ, 𝑛〉 =
{
𝛿 𝑗ℓ 𝛿𝑚𝑛 for zero modes,
𝛿 𝑗 ,−ℓ 𝛿𝑚𝑛 for non-zero modes.

(18)

On the lattice (𝑎 ≠ 0),

Γ
𝑗𝑚,ℓ𝑛

5 = 〈 𝑗 , 𝑚 |𝛾5 ⊗ 1|ℓ, 𝑛〉 '
{
𝛿 𝑗ℓ 𝛿𝑚𝑛 for zero modes,
𝛿 𝑗 ,−ℓ 𝑐𝑚𝑛 for non-zero modes,

(19)

where 𝑐𝑚𝑛 ≠ 0 due to the taste symmetry breaking. Hence, |Γ𝑖,𝑘

5 | has a specific pattern which
we call “ leakage pattern”. For zero modes it is diagonal within a quartet. For non-zero modes it
is off-diagonal and non-trivial only between a quartet and its parity partner (we call them “octet”
collectively because the parity partner can be determined from a quartet completely). Therefore,
zero modes and non-zero modes can be distinguished by the leakage pattern. For example, we show

5
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(a) Example for data sampling. (b) A 15 × 15 data sample (𝑠 = 34).

Figure 4: (b) is a zoom-in version of the red square of (a). The red square lines represent a typical data
sample. The red blob in the upper left corner of the red square represents the sample serial index 𝑠 in Eq. (20).
The red arrows point to the black border lines between non-zero mode octets.

a typical leakage pattern in Fig. 3. Here, the gauge configuration has 𝑄 = +2; 𝑛− = 2 (left-handed
zero modes), 𝑛+ = 0 (right handed zero modes). The chroma of blue color represents a value of
|Γ𝑖,𝑘

5 |. Here, 𝑖 and 𝑘 are serial indices. The two red boxes represent two zero modes: one (0 ≤ 𝑖 ≤ 3)
and the other (4 ≤ 𝑖 ≤ 7). We find that the leakage pattern for zero modes is diagonal within a
quartet. There are three non-zero modes in Fig. 3. One represents 𝑗 = ±1 (8 ≤ 𝑖 ≤ 15), another
𝑗 = ±2 (16 ≤ 𝑖 ≤ 23), and the other 𝑗 = ±3 (24 ≤ 𝑖 ≤ 31). The leakage pattern of non-zero modes
is off-diagonal and random within an octet.

The leakage pattern (LP) method has a number of advantages compared with the spectral flow
(SF) method [13]. First, the LP method is as robust as the SF method in identifying zero modes
and non-zero modes. Second, the LP method is, at least by a factor of thousand, cheaper than the
SF method in computational cost.

6. Deep learning study

Here, we want to address a question: Is the leakage pattern valid and universal
over the entire gauge configurations? Since there are too many zero modes and non-
zero modes with various 𝑄 values, it is practically impossible to check the leakage pattern over the
entire gauge configurations by analytic methods or by visual examination. Here, we introduce the
deep learning (DL) techniques to solve the problem, which recognize a specific pattern embedded
in the data if it exists, even though the data look completely random in the eye sight. The DL method
allows us to check the leakage pattern for non-zero modes through the whole gauge configurations.

For the numerical study on the DL method, we use the lowest 200 × 200 matrix elements of
|Γ𝑖,𝑘

5 | (0 ≤ 𝑖, 𝑘 < 200) on the lattice specified in Table 2.

6.1 Data sampling

Here, our task belongs to a classification problem in DL. We select 15 × 15 sub-matrices
randomly along the diagonal (𝑖 = 𝑘) line of the 200 × 200 matrix of |Γ𝑖,𝑘

5 |. There is no overlap

6
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DL model structure our specific choice
Loss function categorical cross-entropy
Hidden layer’s activation function ReLU
Output layer’s activation function Softmax
Optimization algorithm for loss function Adam
Neural network layer MLP, CNN, CNN + MLP
Auto-hyperparameter tuner Keras tuner (random search)

Table 3: DL model structure

among the sub-matrices so that the probability distribution should be independent and identical.
The sub-matrices are classified by the location of the border line between two adjacent octets as in
Fig. 4, where an octet is composed of a quartet and its parity partner of non-zero modes. We choose
the size of the sub-matrices as 15 × 15 from the following guidelines.

• We want to maximize statistics or the number of samples, which requires minimizing the size
of the sub-matrices.

• We want to make the whole samples contain at least one complete set of an octet.

The total number of different classes or labels (in terms of DL) is eight, which is equal to the number
of components in an octet. We define the class ID, 𝐶 as follows,

𝐶 = (𝑠 − 𝑖𝑏) mod 8 (20)

where 𝑠 is a serial index of the left-upper corner in a sub-matrix (e.g. 𝑖 = 𝑘 = 34, the red blob in
Fig. 4b), and 𝑖𝑏 is a serial index for the border line (e.g. 𝑖 = 40 and 𝑘 = 40, black lines in Fig. 4b).
Examples for the eight classes are presented in Fig. 10 of Ref. [4].

6.2 Deep learning analysis

Details on the structure of our DL model are summarized in Table 3. Here, ReLU, MLP,
and CNN represents rectified linear unit, multi layer Perceptron, and convolutional neural network,
respectively. In order to perform the DL study, we need three types of data sets by construction:
one for training, another for validation, and the other for test. Details on the DL data sets are given
in Table 4a.

When we perform the auto hyperparameter tuning, we find out that our best performance model
is MLP. The hyperparameters for MLP are given in Table 4b. There are about ten samples (15× 15
sub-matrices) per gauge configuration as shown in Table 4a. We adopt the accuracy metric to
measure the performance of DL model. The accuracy is defined as a ratio 𝑇𝐶/𝑇𝑁𝐷, where 𝑇𝐶

represents the number of truly classified samples (DL prediction is equal to true class), and 𝑇𝑁𝐷

represents the total number of the data samples.
In the test data set, we find that there are two independent sets of gauge configurations which

are distinct by the accuracy: one set of five gauge configurations has accuracy less than 0.5, and the
other set of 137 gauge configurations has accuracy of about 0.9. The former are called “abnormal
set” and the latter “normal set”. The abnormal gauge configurations are entirely caused by the ghost

7
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data set ngc nds

training 120 1223

validation 30 308

test 142 1441

(a) DL data sets

layer NN type # of units act.f.
input - 225 -
1st hidden MLP 160 ReLU
2nd hidden MLP 1210 ReLU
3rd hidden MLP 1490 ReLU
output MLP 8 softmax

(b) The hyperparameters of the best performance model.

Table 4: DL data sets and the best performance model. (a) The ngc (nds) represents the number of gauge
configurations (the number of data samples). (b) The NN denotes neural network and the act.f. activation
function.

eigenvalue problem of Lanczos algorithm [14]. Before we begin our numerical study on the DL
method, we have excluded by hand those abnormal gauge configurations on which the topological
charge 𝑄 measured by the index theorem is different from that of the direct measurement. In fact,
the DL method is the best to identify the abnormal gauge configurations such that we can filter them
out.

Let us consider the accuracy 𝐴𝑖 measured on a gauge configuration with an index 𝑖. Then we
can consider a set of the accuracies 𝑆𝑎 = {𝐴𝑖} for 1 ≤ 𝑖 ≤ 𝑁 . We also have a set of the number of
samples 𝑀𝑖 for each gauge configuration 𝑆𝑛 = {𝑀𝑖}. Then we can consider an weighted average of
the accuracy 𝐴̄ over the gauge configurations:

𝐴̄ =

∑
𝑖

𝑀𝑖𝐴𝑖∑
𝑖

𝑀𝑖

, 𝜎2
𝐴̄
=

∑
𝑖

𝑀𝑖 (𝐴𝑖 − 𝐴̄)2

(𝑁 − 1)∑
𝑖

𝑀𝑖

, (21)

where 𝜎𝐴̄ is the statistical error for 𝐴̄. In Table 5, we present results for 𝐴̄ measured over the entire
set (mixed = normal + abnormal), a subset of the abnormal gauge configurations (abnormal), and
a subset of the normal gauge configurations (normal). The accuracy for the abnormal subset is
so small that the DL method can identify it easily. We find that the large error for the mixed set
comes from that for the abnormal subset. We also find that the extremely high accuracy for the
normal subset reflects on the fact that the DL method succeeds in classifying the samples of the
normal subset, which leads to the key point that if we select the majority of the DL prediction on
each gauge configuration, we can distinguish all the non-zero mode octets perfectly over the entire
normal subset.

We apply the DL method on the non-zero modes, because they are more appropriate for the DL
analysis due to the following reasons: 1) abundant data, 2) complex structure, and 3) randomness
in leakage pattern. The DL analysis gives a border line of the non-zero modes octets robustly. The
leakage pattern for zero modes combined with the DL method is as robust as the SF method in
determining the topological charge 𝑄. However the key point is that the computational cost for the
DL method is much cheaper than the SF method by at least a factor of 1000.

6.3 ROC curve

In the previous subsection, we use the accuracy metric for the DL analysis. In general, for a
skewed probability distribution of classes, the accuracy is not such a good metric that it might give a
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configuration # conf. 𝐴̄ [%]
mixed 142 96.5(13)
abnormal 5 17.3(78)
normal 137 99.4(2)

Table 5: Results for the accuracy 𝐴̄ for mixed, abnormal, and normal set of gauge configurations in the test
data set.

misleading information on the DL model performance [15]. Since the class distribution of our data
samples is not skewed but uniform, the accuracy is a good metric for our DL analysis. There are
tens of alternative metrics in the DL market. Among them, the AUC (area under ROC curve) [16] is
one of the most popular metrics, and can be used instead of accuracy even if the class distribution is
skewed. Here, the ROC stands for receiver operating characteristic. In order to crosscheck results
from the accuracy metric, we adopt the AUC metric, even though we expect that both metrics will
give the same answer for our data sets in the end of day.

A ROC curve is defined in binary class (positive and negative classes). As in Fig. 5, 𝑦-axis of
ROC curve is true positive rate (TPR) and 𝑥-axis is false positive rate (FPR).

TPR =
𝑇𝑃

𝑃
FPR =

𝐹𝑃

𝑁
(22)

Here, 𝑇𝑃 (𝐹𝑃) represents the number of the samples for which the DL prediction is positive and
their actual class is positive (negative). The 𝑃 (𝑁) is the total number of samples in the actual
positive (negative) class. Here, the DL binary model gives a probability that each sample belongs
to the positive class. The DL model prediction for each sample is determined by a threshold applied
to the probability to accept it (positive prediction) or reject it (negative prediction). The number of
samples in the positive prediction changes according to the threshold value, and so do the 𝑇𝑃 and
𝐹𝑃, which leads to a corresponding change in TPR and FPR. Hence, we may obtain the ROC curve
for the DL binary model by running the threshold from 0 to 1.

If we set the threshold to zero, all the predictions by the DL binary model are positive, which
results in a trivial case that 𝑇𝑃 = 𝑃 and 𝐹𝑃 = 𝑁 , which corresponds to (1, 1) in the ROC curve. If
the threshold is set to 1, all the preditions are negative, which makes 𝑇𝑃 = 0 and 𝐹𝑃 = 0, which
corresponds to (0, 0) in the ROC curve. Hence, the ROC curves, in general, share the two points
(1, 1) and (0, 0) in common. If the DL predictions are perfect (i.e. 𝑇𝑃 = 𝑃 and 𝐹𝑃 = 0), then the
ROC curve passes through (1, 0). AUC is the area under the ROC curve, and so AUC for a perfect
DL model is 1. If the DL predictions are random (i.e. 𝑇𝑃 = 0.5𝑃 and 𝐹𝑃 = 0.5𝑁), the ROC
curve corresponds to the blue dashed line in Fig. 5, which makes AUC=0.5. Hence, AUC is an
alternative good metric for the DL model performance. If the DL model prediction gets better, its
AUC becomes closer to 1. If the DL model prediction gets worse, its AUC becomes closer to 0.5.

Since our DL model belongs to the multiclass classification, we need to extend the binary-class
picture of the ROC curve to the multiclass picture. We use the one-versus-rest method to extend the
ROC curve to the multiclass classification [16, 17]. The one-versus-rest method converts multiclass
classification into binary class classification regarding 𝑐𝑖 as a positive class and the rest ({𝑐 𝑗 | 𝑗 ≠ 𝑖})
as a negative class. In Fig. 5, we present the ROC curve and its AUC(𝑐𝑖) for each class 𝑐𝑖 in our
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Figure 5: ROC curves and AUC metric for our best performance model

best DL model. Our total AUC is

AUCtot =

∑
𝑐𝑖 ∈𝐶

AUC(𝑐𝑖)𝑤(𝑐𝑖)∑
𝑐𝑖 ∈𝐶

𝑤(𝑐𝑖)
(23)

where 𝐶 is a set of all classes, and 𝑤(𝑐𝑖) is a weight of 𝑐𝑖 (= the number of samples in 𝑐𝑖). Our best
performance model (MLP) gives AUCtot = 0.998 ' 1 for the normal set.

The AUCtot value implies that our best DL model works almost perfectly. Results for the
AUC metric are highly consistent with those for the accuracy metric in the previous subsection.
Its physical meaning is that the leakage pattern for zero and non-zero modes is universal over the
normal gauge configurations.

7. Conclusions

Thanks to the 𝑈 (1)𝐴 symmetry and the 𝑆𝑈 (4) taste symmetry, the leakage pattern (LP) for
zero modes is quite different from that for non-zero modes. We use the deep learning (DL) method
to verify that the LPs for the chirality operator are universal over the normal gauge configurations,
which we can not prove analytically nor visually. We find that, using the LP method combined with
the DL method, we can determine topological charge as robustly as the spectral flow (SF) method.
Since the computational cost for the LP/DL method is much cheaper than that for SF at least by a
factor of 1000, the LP/DL method is highly promising.
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