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Inspired by the flow description of su(N) colour calculations, we recently showed how to simplify
the spinor-helicity formalism (at the algebra level two copies of complexified su(2)) by treating
each Weyl spinor as part of a flow line with definite chirality and momentum. This formalism,
dubbed the chirality-flow formalism, eliminates all non-trivial algebra from tree-level spinor-
helicity calculations, thus allowing the shortest possible route from Feynman diagrams to complex
numbers (spinor inner products). In this presentation, we briefly introduce the main features of
this method and show some examples.
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1. Introduction and the massless spinor-helicity formalism

The spinor-helicity formalism is often the most convenient framework in which to perform
scattering amplitude calculations [1-25]. At its core, it describes particles as (combinations of)
two-component Weyl spinors which transform separately under Lorentz transformations. At the
level of the Lorentz algebra so(3, 1)c = su(2)c,.®su(2)c r, the Weyl spinors transform under either
the left-chiral su(2)c, 1 or the right-chiral su(2)c r. For example, we can make this decomposition
manifest by considering Dirac spinors in the chiral basis, written schematically (for some p1, p>) as

u(p) ~v(p) ~ (:ig) i(p) ~v(p) ~ ([p1| : <sz) y = (_01 (1)) : (1.1)

where the square brackets are Weyl spinors transforming under su(2)c, 1, the angled brackets are
Weyl spinors transforming under su(2)c g, and the eigenvalue of y°> gives the chirality.

Since helicity is the spin-quantum number of any massless particle [26-28], it is natural to
calculate massless scattering amplitudes using states of definite helicity. For massless Weyl spinors,
such states are also eigenstates of the chirality operator 5>, meaning they transform under only one
su(2)

i (p) = (p) = (“S)) W (p) = v*(p) = ('f)]) ,
) =7 (P =(Ipl . 0) TP =7 =(0. ). (1.2)

Conversely, using 7 = (1,5)/V2 and 7# = (1, -3)/V?2, vectors can be seen as containing both
chiralities, with massless momenta given by

V2ptt, = p = plipl, V2pht, = p=p)ipl, (1.3)
and outgoing gauge bosons given by [9, 14]

)= (rit#|p]
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Here, the gauge boson has momentum p, while r is an arbitrary reference momentum which
corresponds to a particular gauge choice.
After using algebraic identities such as (see for example [29, 30])

T j1klTll) = GD [k ] and T = ) (1.5)

Fierz identity charge conjugation

a scattering amplitude is written in terms of Lorentz-invariant spinor inner products
@) ==-Gi=dlj)y and  [ij] ==[j] =], @) ~ijI~~v2pi-p;  (1.6)

which are simple, well known complex numbers.
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2. Chirality flow

In the last section we saw that with a few algebraic identities one can move from Feynman rules
to complex numbers. In this section we describe a set of flow rules which eliminates the need for
explicitly using these identities, which are instead built into the flow rules [31-33].

We begin with an ansatz for the spinor inner products. Since the left- and right-chiral states
transform separately under Lorentz transformations, we require two distinct line types. Inspired by
square brackets having dotted indices and angled brackets having undotted indices, we use dotted
(more accurately dashed) lines to refer to square inner products, and solid lines for angled inner
products

W a = i) = iy = i s G il = L] = =Ll = i

where the arrow direction matters since the inner products are antisymmetric. Cutting the flow lines
in two gives the flow definitions of the spinors

=@ ——~—1 . = @-<----i
=@ . N=Q@Q-->---7 . 2

In [31], we proved that we can always use the Fierz identity on the Pauli matrices, thus replacing
a vector with a chirality-flow double line, i.e. a solid and dotted line with arrows opposing

p
e

HANSAANAN Y = Tomx--- or TS (23)

Finally, we define the momentum dot for slashed momenta (with p = 3; p;, p? =0)

i Pi i Pi

\/quf#:me: > - \/Ep”T,,=Z|i]<i|= ”>7.¥ - @24

If the particles are massive, we describe them as combinations of massless spinors allowing to
recycle the above results. For instance, a massive momentum p with p* = m? # 0 is decomposed
as a sum of massless momenta p and ¢

2 m? m?

pr=p"Hragt,  (p)=¢"=0, p=m’, a=-—F—=
2p*-q 2p-q

) (2.5)

while, for example, an incoming spinor with spin along the axis s# = (p* — 2aq*)/m is given by

_e_iW\/aQ---> ----- q . m
= ol eVa =
() — [gp”]

A full list of massive spinors and polarisation vectors, together with the Standard Model flow rules

(2.6)

o[ —eTValq]
u (p) = b
p”)

is given in [33].
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3. Standard Model examples

To calculate a Feynman diagram in massless QED, we simply draw the chirality-flow lines
without the arrows, then connect them as given by the flow rules. Next, we choose a single arrow
direction and follow it through the diagram, remembering the requirement of opposing arrows for
a double line, eq. (2.3). This process leads to an algebra-free journey from a Feynman diagram to
inner products for even very complicated diagrams such as (Feynman in black, flow lines in colour,
all momenta outgoing)

4~ — (_i)3 (i)4 (\/Eei)g

$12 834 578910 S125 $346 58910 $910 ~—nu—

27 3f

—P1—P2—DP5 vertices

i <-- <] < @-<- S —<— G- photon propagators fermion propagators
9 k p3+ps+ pe 1
) X — <I‘<)9> [ 9/'3] + <I‘<) ] ()> [ 107g I
B ps + P9 + Do - o [Srg] (r99) (
7 L T < 10+
E é polarisation vectors
I< 1+ X ( [33] (37) + [34]¢47) + [36](67))
8 s Tq 9 ——

X [15](64)( — (89)[911¢12) — (89)[95](52) — (8 10)[10 1](12) — (8 10)[10 5]<5z>) . (3.1

where the flow line and inner product colours coincide and the black prefactors are trivially found.

When using massive fermions, we have more components in our flow rules, both from the
external spinors (e.g. eq. (2.6)) and from the mass term in the fermion propagator. We then build
the flow diagram from the flow rules as in eq. (3.1), but have to take care of minus signs [33]. For
example, we find (ignoring trivial factors)

2~ 3T
W
- mei (p2+¢3)
h
_ 7 A+
1 5 4

i
X | Vage'* s a4 —5 M4 S , (3.2)
p? . a4 p?l . \\pz

where the flow lines are the inner products we seek, the weak interaction simplifies by removing
right-chiral couplings, and the Higgs has no flow since it is a Lorentz scalar.

4. Conclusions and outlook

In this presentation we reviewed the basics of the novel chirality-flow method, which allows to
go from Feynman diagrams to complex numbers without intermediate algebraic manipulations. We
gave examples of massless and massive tree-level Feynman diagrams to illustrate the efficiency and
transparency of our method, which can be used to calculate any tree-level Standard Model process.
In future, we aim to extend this method to loops and recursive calculations.
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