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Standard final-state dipole showers are typically derivedwithin an approximation of a large number
of colours. Efficient and widely used algorithms in the literature to go beyond this approximation
are known to yield incorrect sub-leading colour contributions for a variety of observables at
leading logarithmic accuracy. In this review we introduce two new algorithms, which are based
on colour coherence, that allow showers to correctly account for the full colour structure of
global observables at next-to-leading logarithmic accuracy. One of the two introduced schemes
also enables showers to reproduce the correct full-colour matrix element for any number of
commensurate-angle energy-ordered pairs of emissions.
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1. Introduction

Parton showers are indispensable tools in high energy physics. In recent years, however, their
accuracy has come under intense scrutiny as their uncertainties can dominate in certain collider
applications.

Showers of the dipole family [1] are typically derived within the approximation of a large
number of colours (#c), also called the leading-colour (LC) approximation. There has been much
effort in the literature to go beyond the LC approximation, for example Refs. [2–10]. However,
implementing the full colour structure is computationally challenging because of the rapidly growing
number of possible colour configurations at large particle multiplicities. In this review of Ref. [11]
we present a complementary, and computationally efficient approach for incorporating full colour
information into a shower in terms of its logarithmic accuracy.

We judge a shower’s logarithmic accuracy by whether it is able to reproduce known analytic
resummations for a wide range of collider observables at a given logarithmic order. I.e. for an
exponentiating property of an event %(UB, !), where UB is the strong coupling at the hard scale &,
and ! the logarithm of a ratio of two scales, one may organise its resummation as follows [12]:

%(UB, !) = %(UB, 0) exp

(
U−1
B 61(UB!)︸         ︷︷         ︸

LL

+ 62(UB!)︸   ︷︷   ︸
NLL

+ UB63(UB!)︸       ︷︷       ︸
NNLL

+ · · ·
)
+ O

(
4−|! |

)
. (1)

Here, LL stands for leading-logarithmic accuracy, NLL for next-to-leading-logarithmic accuracy,
and so on. Concretely, at N:LL accuracy we sum terms of the form U=B !

=+1−: .
For the purposes of controlling the achieved accuracy with respect to colour, we sometimes

make the number of colours explicit. Thus the leading colour (LC) accurate part of the N:LL
resummation involves terms U=B #=c !=+1−: , while the next-to-leading colour (NLC) accurate part
involves terms U=B #=−2

c !=+1−: and so on. We refer to this counting as N:LL-LC, N:LL-NLC, etc.
In the case where no approximation is made to the colour structure, we call this a N:LL full-colour
(or N:LL-FC for short) accurate result.

Up to now we could expect a shower to be at most NLL accurate at leading colour [13].
Recently it has been noted that dipole-based parton showers, equipped with established algorithms
for introducing sub-leading colour corrections, fail to achieve LL-NLC accuracy [14]. The objective
of the presented work [11] is to introduce two algorithms which consistently incorporate colour into
final-state dipole showers, enabling NLL-FC accurate resummations for a wide class of collider
observables.

2. Algorithms for achieving full colour at NLL accuracy

The basis of our solutions is colour coherence (or equivalently angular ordering), which
provides insight into the colour structure of emissions at widely separated angles - the kinematic
configuration which contributes at NLL accuracy.

The first of these schemes, nicknamed the Segments scheme, uses an ordered list of transition
points in rapidity defined with respect to dipole ends to assign a colour factor for further emissions
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in accordance with colour coherence.1 This list is built iteratively from the initial @@̄ or 66 system.
For each dipole in an event it describes angular regions where emissions should be assigned a
��/2 = #c/2 or �� = (#2

c − 1)/2#c colour factor. Consequently this scheme captures the full
structure of angular ordering for any configuration of emissions widely separated in rapidity.

The second of these schemes utilises a local matrix-element correction factor. It uses an
approximate double-soft gluon emission matrix element which assures that the correct full-colour
emission pattern is reproduced when any number of pairs of emissions are at commensurate
rapidities, but disparate energies. Consequently we call this scheme the Nested-Ordered-Double-
Soft scheme, or NODS scheme for short.

For full details on the Segments (NODS) scheme we refer the reader to the original paper [11],
section 3.4 (4.3). By design, they both enable showers to reproduce NLL-FC resummation results
for global observables. Sub-leading colour issues still remain in the case of non-global observables.

Below, we will compare the behaviour of our two new schemes to that of typical colour-
assignment algorithms used in standard dipole showers, such as Pythia8 [16, 17] and Dire v1 [18].
In these, each dipole is split into an “emitter” and a “spectator” end. Effectively, any new emission
from a dipole receives its colour factor based on the identity of the emitter. E.g. if the emitter is
a quark (gluon), the emission is assigned a colour factor �� (��/2). Accordingly, we refer to this
scheme as “colour-factor-from-emitter” (CFFE).

3. Numeric validation of algorithms

We evaluate the validity of the introduced algorithms on two fronts: First, by understanding
how faithfully a shower reproduces analytic matrix elements when equipped with a given colour
scheme introduced in sec. 2. And second, how well a given shower with an associated colour
scheme reproduces analytic resummations, as outlined in sec. 1.

Beginningwith the first of these criteria, we consider a @@̄61 systemwith predefined kinematics,
and ask the shower (in this case the :C ordered shower PanGlobal V = 0 - see ref. [13] for details)
to emit a further gluon 6. For example, we pick 61 to be emitted at [@61 = − ln(tan(\@61/2)) = 5,
I61 = 10−8, and q61 = c. Furthermore, we equip the shower with each of the colour schemes
discussed in sec. 2 and differentially compare the resulting emission probability 3fFC/3q3[ (fFC
for short) to a corresponding analytic matrix element 3fan/3q3[ = 3Φ6 |M@̄61@ +6 |2/|M@̄61@ |2
(fan for short).

We analyse the resulting relative deviation between the two in Fig. 1a in terms of the pseu-
dorapidity [6@ and azimuthal angle q defined w.r.t. the quark. In order to avoid issues related to
numerical instabilities near 61, we do not populate phase-space points near it.2

The top row of Fig. 1a shows the relative deviation between the shower handling colour with
CFFE from the analytic matrix element. When the gluon is emitted at large pseudo-rapidities (in
proximity to the parent quark), a correct �� colour factor is applied. However, far away from 61, as
[@6 → 0, the shower mis-assigns a��/2 (instead of�� ) colour factor in a logarithmically enhanced
region which spoils the LL-NLC accuracy of the shower. The middle row of Fig. 1a shows the same

1The scheme bears resemblance to the scheme introduced in Ref. [15] (sec. 4.2).
2More precisely, the phase space in Fig. 1a portrays the primary Lund plane (equiv. @ Lund leaf) as determined by

the Lund declustering algorithm [19].
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(a)Differential comparison between shower-generated and
analytic matrix element for CFFE (top), Segments scheme
(middle), and NODS scheme (bottom). See text for more
details.
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(b) Relative deviation of shower (PanGlobal V = 0) from
known LL analytic resummation when equipped with
CFFE (left), and deviation from NLL when equipped with
NODS (right).

Figure 1: Evaluating the correctness of the colour schemes introduced in sec. 2 by how well they reproduce
known matrix elements (Fig. 1a), and known analytic resummations (Fig. 1b).

analysis for a shower equipped with the Segments scheme. Here the correct colour factor �� is
assigned if the gluon is emitted close to and away from the quark @. There still, however, remains a
residual deviation from the exact matrix element when [@6 ∼ [@61 . Since this discrepancy happens
in an O (1) region, this does not impact the full-colour accuracy of the shower. Finally, the bottom
row of Fig. 1a shows the deviation from a shower equipped with the NODS scheme. We note
that, within statistical fluctuations, the analytic matrix element is reproduced faithfully. Tests with
different initial configurations, more precisely @@̄6162 and @@̄@′@̄′, yield similar results and are
summarised in sec. 6 for the source material.

The above observations contribute to whether a shower is able to reproduce NLL full colour
resummations. Fig. 1b shows the relative deviation of PanGlobal V = 0 equipped with CFFE
(NODS) from LL (NLL) accurate analytic resummations of common event shapes. It is thus clear
that showers equipped with CFFE are unable to reproduce full-colour resummation results even at
LL. However, using the NODS (or Segments) scheme, the shower achieves NLL-FC accuracy.

We also tested the energy flow in a rapidity slice [20], which is a non-global observable. In
sec. 7.3 of the source material we compared PanGlobal(antenna, V = 1/2) to a dedicated numeric
resummation [21] and found good agreement when running both with our Segments and NODS
schemes.

4. Conclusions

In these proceedings we reviewed two simple algorithms to recover full-colour information in
modern final-state dipole showers. We introduced two schemes in sec. 2, named the Segments, and
NODS scheme, and showed in sec. 3 that they allow showers to reproduce full-colour resummations
for a wide class of shower observables.

4



P
o
S
(
L
H
C
P
2
0
2
1
)
2
2
6

Colour and logarithmic accuracy in final-state parton showers Rok Medves

References

[1] G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306
(1988) 746.

[2] S. Platzer and M. Sjodahl, Subleading #2 improved Parton Showers, JHEP 07 (2012) 042
[1201.0260].

[3] Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012)
044 [1202.4496].

[4] Z. Nagy and D.E. Soper, Effects of subleading color in a parton shower, JHEP 07 (2015)
119 [1501.00778].

[5] S. Plaetzer, M. Sjodahl and J. Thorén, Color matrix element corrections for parton showers,
JHEP 11 (2018) 009 [1808.00332].

[6] Z. Nagy and D.E. Soper, Parton showers with more exact color evolution, Phys. Rev. D 99
(2019) 054009 [1902.02105].

[7] J.R. Forshaw, J. Holguin and S. Plätzer, Parton branching at amplitude level, JHEP 08
(2019) 145 [1905.08686].

[8] M. De Angelis, J.R. Forshaw and S. Plätzer, Resummation and simulation of soft gluon
effects beyond leading colour, 2007.09648.

[9] S. Hoeche and D. Reichelt, Numerical resummation at full color in the strongly ordered soft
gluon limit, 2001.11492.

[10] J. Holguin, J.R. Forshaw and S. Plätzer, Comments on a new ‘full colour’ parton shower,
2003.06399.

[11] K. Hamilton, R. Medves, G.P. Salam, L. Scyboz and G. Soyez, Colour and logarithmic
accuracy in final-state parton showers, 2011.10054.

[12] S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in
e+ e- event shape distributions, Nucl. Phys. B407 (1993) 3.

[13] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam and G. Soyez, Parton
showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125 (2020) 052002
[2002.11114].

[14] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy
of parton showers: a fixed-order study, JHEP 09 (2018) 033 [1805.09327].

[15] C. Friberg, G. Gustafson and J. Hakkinen, Color connections in 4+4− annihilation, Nucl.
Phys. B490 (1997) 289 [hep-ph/9604347].

[16] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to
PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [1410.3012].

5

https://doi.org/10.1016/0550-3213(88)90441-5
https://doi.org/10.1016/0550-3213(88)90441-5
https://doi.org/10.1007/JHEP07(2012)042
https://arxiv.org/abs/1201.0260
https://doi.org/10.1007/JHEP06(2012)044
https://doi.org/10.1007/JHEP06(2012)044
https://arxiv.org/abs/1202.4496
https://doi.org/10.1007/JHEP07(2015)119
https://doi.org/10.1007/JHEP07(2015)119
https://arxiv.org/abs/1501.00778
https://doi.org/10.1007/JHEP11(2018)009
https://arxiv.org/abs/1808.00332
https://doi.org/10.1103/PhysRevD.99.054009
https://doi.org/10.1103/PhysRevD.99.054009
https://arxiv.org/abs/1902.02105
https://doi.org/10.1007/JHEP08(2019)145
https://doi.org/10.1007/JHEP08(2019)145
https://arxiv.org/abs/1905.08686
https://arxiv.org/abs/2007.09648
https://arxiv.org/abs/2001.11492
https://arxiv.org/abs/2003.06399
https://arxiv.org/abs/2011.10054
https://doi.org/10.1016/0550-3213(93)90271-P
https://doi.org/10.1103/PhysRevLett.125.052002
https://arxiv.org/abs/2002.11114
https://doi.org/10.1007/JHEP09(2018)033
https://arxiv.org/abs/1805.09327
https://doi.org/10.1016/S0550-3213(97)00064-3
https://doi.org/10.1016/S0550-3213(97)00064-3
https://arxiv.org/abs/hep-ph/9604347
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012


P
o
S
(
L
H
C
P
2
0
2
1
)
2
2
6

Colour and logarithmic accuracy in final-state parton showers Rok Medves

[17] T. Sjostrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved
multiple interactions, Eur. Phys. J. C39 (2005) 129 [hep-ph/0408302].

[18] S. Hoeche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J.
C75 (2015) 461 [1506.05057].

[19] F.A. Dreyer, G.P. Salam and G. Soyez, The Lund Jet Plane, JHEP 12 (2018) 064
[1807.04758].

[20] M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E(t) flow: A Case study,
JHEP 03 (2002) 017 [hep-ph/0203009].

[21] Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite #2 , Nucl. Phys. B874
(2013) 808 [1304.6930].

6

https://doi.org/10.1140/epjc/s2004-02084-y
https://arxiv.org/abs/hep-ph/0408302
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://arxiv.org/abs/1506.05057
https://doi.org/10.1007/JHEP12(2018)064
https://arxiv.org/abs/1807.04758
https://doi.org/10.1088/1126-6708/2002/03/017
https://arxiv.org/abs/hep-ph/0203009
https://doi.org/10.1016/j.nuclphysb.2013.06.021
https://doi.org/10.1016/j.nuclphysb.2013.06.021
https://arxiv.org/abs/1304.6930

	Introduction
	Algorithms for achieving full colour at NLL accuracy
	Numeric validation of algorithms
	Conclusions

