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Cutting-edge Artificial Intelligence is being implemented in a wide range of tasks in High Energy
Physics (HEP) in order to facilitate the analysis of large datasets. However, visual recognition has
not been explored as much in HEP for event classification. This study shows how Convolutional
Neural Networks could be applied for such an important task, for which a novel method to represent
the event information in images is explored.
This technique is applied for a classification problem corresponding to a search for Dark Matter
in proton-proton collisions. The results obtained with this technique are also compared with the
performance of a Boosted Decision Tree.
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1. Introduction

This study presents an innovative way for classifying particle collisions as those taking place
in the Large Hadron Collider (LHC). Since visual recognition belongs to the state-of-the-art in
Artificial Intelligence algorithms, a new technique using Convolutional Neural Networks (CNNs)
is explored for event classification [1]. The samples used were produced by the DarkMachines
initiative [2], using a quick detector simulation for a modified version of the ATLAS detector
card [3]. The signal events considered for this analysis are mono-top processes, in which a top
quark is produced in association with Dark Matter (DM) particles. Due to the low interaction
probability associated to DM particles, these are not expected to interact with the detector. In
particular, in this study, the selected events are required to have large missing transverse momentum
(MET > 150 GeV), together with exactly one charged lepton (i.e. electron or muon) and at least
one b-tagged jet coming from the decay of the top quark. The main background processes for this
search are CC̄, t-channel single top andW+jets, which need to be distinguished from the DM signal.

2. Visual recognition for event classification

To deal with event classification, in which a very rare process needs to be identified over a
large data volume, there are standard Machine Learning (ML) techniques such as Boosted Decision
Trees (BDTs) and Neural Networks (NNs). These multivariate techniques provide good results.
However, other Artificial Intelligence (AI) technologies based on visual recognition have shown big
improvement over last years, which could be taken as an advantage for event classification.

CNNs consist in a class of Neural Networks that uses images as inputs, preserving the spatial
symmetries and the local structures of the images. To do that, the first layers perform two-
dimensional operations1 on the pixels, learning from the spatial structure and acting as a feature
extractor. Subsequently, the resulting pixels are flattened in an array, acting as the input for some
dense layers added in order to perform the classification. In this way, it might be possible with an
appropriate representation, that CNNs could learn physics features from an image.

2.1 Transfer learning

Training a NN as supervised learning consists in an iterative process in which a large amount
of parameters are updated in each step in order to minimize a function, called Loss function, which
is related to the proportion of events that are classified wrongly. This process can be speed up
using transfer learning [4], which is based on the idea that most of the basic features for image
classification (lines, edges, etc.) are common, so one would only need to train for the specifics
of the problem. Thus, this study will use the power of the well-known architecture VGG16 [5],
freezing part of its parameters during the training process.

However, to be able to use images, a collision event needs to be represented as an image and
this is the most challenging and innovative aspect of this approach.

1There are also CNNs which make analogous operations in three dimensions, working with 3D images.
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2.2 Image representation of the events

For each collision, each object will be represented by a circle and its colour will correspond
to the type: green for charged leptons (electrons and muons), pink for jets, red for b-tagged jets
and blue for the missing transverse momentum (MET or ?<8BB

)
). The direction of the particles is

completely determined by the coordinate system of ATLAS, with the x-axis corresponding to the
pseudorapidity [ in the range [-4.5, 4.5] (related to the angle with respect to the beam) and the
y-axis corresponding to the azimuthal angle q transverse to the beam axis in the range [-c, c]. This
can be understood in Figure 1 for an image example2. Finally, the transverse momentum of each
particle is proportional to the size of the circles, following a binned scaling and preventing larger
?) particles from exceeding the image limits. In this way, the four-momentum of the particles, their
type and the most essential event characteristics are encoded in the image.

Figure 1: Image representation of the principal characteristics of a collision: pseudorapidity (x-axis),
azimuthal angle (y-axis) and ?) (circle diameters) of every particle. Each colour corresponds to one type of
particle: charged leptons (electron and muon) are green, jets are pink, b-tagged jets are red and the missing
transverse momentum is given by a blue circle.

Thus, an intuitive representation is proposed in this study, in which more specific observables
(beyond the kinematic variables) could be added to provide more information to the CNN. In
addition, the CNN is seeing not only the four-momentum of the individual objects, but also the
spatial relations between them, from which some important information can be learnt. In this sense,
it is important to note that by using this technique a lot of information is provided, but the CNN
will decide by its own "where to look" during the training process. However, this is not an obscure
algorithm in which we do not have any access but there are ways to look into the intermediate layers
to check what features of the images is the CNN looking to, but this is left for future work.

3. Results

Balanced datasets are used (around 11900 for each class), which have been split into training
(70%), validation (10%) and test (20%) samples. Physics processes including top quarks, like CC̄,

2The MET, for its part, always has pseudorapidity equals to zero because this quantity is defined as the imbalance of
momentum in the transverse plane to the beam axis. By the definition, the blue circle will appear in the centre ([ = 0) of
all the images.
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C-channel and ,C single top processes, have been merged in the same "top" class. Therefore, the
classifications performed consist of three classes: ,+jets, "top" and signal (a mono-top process),
and the output of the CNN is the label of the class.

A comparison of confusion matrices is shown in Figure 2 between a deep CNN with 13 layers
trained from scratch (Figure 2a) and the VGG16 architecture using transfer learning (Figure 2b).
A similar result is observed, in which the signal is classified much better than the background
processes, but transfer learning achieved a better performance in general. The deep CNN has been
completely trained, consisting of ∼ 2.5 millions of parameters, whereas the VGG16 parameters
have been partially tuned, freezing 7.6 millions of parameters from a total of 16.3 millions. Both
of these approaches have room for optimisation, but it can already be seen that transfer learning is
in fact a very suitable option.

(a) (b) (c)

Figure 2: Confusion matrices for: (a) Deep CNN with 13 layers trained from scratch. (b) Transfer learning
using the well-known architecture VGG16. (c) Boosted Decision Tree using the XGBoost library[6].

Comparingwith the performance achieved using amore standard technique is another important
check (Figure 2c). In this case, we have chosen a very extended ML technique such as a Boosted
Decision Tree (BDT), using XGBoost [6]. Here, the procedure is different since the observables
(the four-momentum of the particles and the event characteristics) are given explicitly to the BDT
as numbers, so very different type of input preprocessing is required. A similar behaviour is also
observed, although theBDT seems to identify the signalworse thanCNNs for this particular problem
(see Figures 2a and 2b). Obviously, this does not have to be the case for any other classification. In
addition, both the CNNs and the BDT can be further optimised.

4. Conclusions

This study shows a feasible technique for event classification, for which a visual recognition
algorithm together with an original way to encode the event information in images are used. In
this way, the transfer learning approach looks to be very promising because the limits of the most
powerful architectures has not been explored in depth for classifying physical processes. And the
most important result comes from the similar performances provided by these CNN approaches
and the BDT, which is widely used in many HEP analyses. This implies that the CNNs are actually
learning physics from the images, instead of irrelevant details.
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