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Current higher-order calculations heavily rely on publicly available tools. These are not necessarily
computer programs, but it is anything that aids in different steps of calculations, e.g. also
includes published loop-amplitudes, integrals and algorithms that eventually lead to important
automatization. In these proceedings we give an overview of tools used for perturbative precision
calculations. The availability, composability and hackability of such tools are what lets our field
flourish. And while our field is already positively standing out in the development of such tools,
we would like to stress their importance for the success of future developments.
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Some tools build the foundation of every calculation; among these are computer algebra packages
like Wolfram Mathematica, Maple, FORM [1] and GiNaC [2]. In these proceedings we highlight a
few specialized tools that are important for LHC precision calculations and phenomenology. The list
of tools presented here is not exhaustive but merely gives a starting point for further exploration. We
furthermore only cover publicly available tools, since these are the ones that allow for a benefit for
the whole community and therefore are key in driving most progress.

Typical calculations of higher-order cross-sections involve multiple stages. First, the calculation
of amplitude expressions in terms of loop integrals and the evaluation of the loop integrals. Then
the development and use of subtraction methods to produce infrared finite results, and finally the
convolution with parton distribution functions (PDFs). At the last stage event generators add parton
shower, hadronization and matching and merging of multiple fixed-order calculations.

Amplitudes. The calculation of amplitudes can be a daunting task for processes with increasing
number of scales, i.e. loops and legs, even without calculating the loop integrals. Even NLO
calculations reach their practical limitations for a sufficient number of legs and internal masses.
Traditionally, amplitudes are calculated using Feynman diagrams in a brute-force approach while
using clever hand-tuned simplification rules in FORM or Mathematica. But the growth of algebraic
complexity of modern problems is significant, and with growing expressions one runs into several
issues. For example numerical cancellations can cause loss of precision in the numerical evaluation.
Sufficiently large expressions are bound to run into issues with a fixed machine precision and also
the growing evaluation time becomes problematic.

On the other hand we know that NLO (one-loop) calculations are meanwhile heavily automatized
and expressions can be compact and fast. This is because of the progress in (numerical) unitarity
techniques [3, 4] that can be efficiently automatized. A lot of progress has been made in applying
numerical unitarity methods to two-loop amplitudes [5–7]. Another turning point is the widespread
use of rational function reconstruction algorithms. These can be combined with numerical evaluations
of amplitudes to obtain compact analytical expressions. A code that combines numerical unitarity
with rational reconstruction for one- and two-loop processes is Caravel [8]. So far it is limited to
QCD at leading color, but it is written in a modular way which can be extended to more complicated
situations. An extensive and general framework for rational reconstruction is FiniteFlow [9], which
can also be useful in other situations.

Reduction of loop integrals. Once the amplitude expressions have been obtained in terms of
the loop integrals, the latter have to be calculated, analytically or numerically. A first step is the
reduction to a set of master integrals. Tools like Reduze [10] and Fire [11–14] are established players
in this field. Kira [15, 16] + FireFly [17, 18] offers strong competition since it automatically uses
rational function reconstruction to handle intermediate expression growth. Note that FireFly is a
dedicated program for rational function reconstruction and can also be used separately.

Even with such improvements the reduction of integral families at the current level of interest
can take terabytes of computer memory. Therefore, further developments are necessary in the
future. For example, it has been suggested to use the Baikov Feynman integral representation to
keep the reduction system small, and additionally use multivatiate partional fractioning to keep
partial expressions small. Such an algorithm has been implemented in the Singular computer algebra
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system [19]. A dedicated package for multivariate partional fractioning is meanwhile also available
as MultivariateApart [20].

Evaluation of loop integrals. The first step when the solution of a loop integral is needed, is to
check whether it has already been done. For that one can use the Loopedia online database [21].
In a narrower sense also solved integrals and explicit expressions of amplitudes count as tools, as
long as they are presented in a machine readable way. Very successful examples of this are the
diboson two-loop amplitudes published in the package VVAmp [10, 22]. The package is merely an
algebraic amplitude expression, but fueled all the diboson NNLO calculations that we now have.
There are several more examples that follow this approach at a more recent level of three-loops
2 → 2, three-loops 2 → 1 with masses, or two-loop 2 → 3.

The current standard technique for the evaluation of loop integrals is to use differential equations
and to ideally find a canonical basis where the dimensional 𝜖-dependence factors out [23], making it
amenable for an analytical integration. Under certain conditions the integrals can be solved iteratively
in terms of multiple polylogarithms. For the evaluation of such functions there are codes like GiNaC
[2, 24] and computer algebra libraries like PolyLogTools [25] for algebraic manipulations. Libraries
for the evaluation of simpler harmonic polylogs are available, e.g. TDHPL [26], CHAPLIN [27], HPL
[28], HPL4 [29] and HPOLY [30]. Most current NNLO calculation make use of these libraries.

Whether one has a canonical basis or not, one can solve the system of differential equations
numerically. This can be done for example using the Mathematica package DiffExp [31]. But the
canonical basis makes the evaluation significantly more efficient, both numerically and analytically.

Tools like epsilon [32], Fuchsia [33] and Libra [34] implement an algorithm to find a canonical
basis for single scale problems. For multi-scale problems there is no general algorithm known, but
the CANONICA package [35] is able to find a canonical basis in certain cases and has been used in
several multi-loop calculations.

Apart from differential equations, other tools and methods exist, of course. For example in some
cases HyperInt [36] can give a solution by direct integration of the Schwinger integral representation.
In other situations deriving nested sum representations turns out to be successful, which can be
handled using the Sigma package [37]. Mellin Barnes representations are also used in some cases
and there are several Mathematica packages available for that purpose like AMBRE [38, 39] or MB.m
[40, 41].

As a last resort and for cross-checks one can use fully numerical sector decomposition with codes
like FIESTA [42–45] and SecDec [46–49]. These are intrinsically slow and “inefficient” compared to
the previously discussed techniques, but they always work and complete multi-loop calculations
have been set up with them.

Cross-sections. Obtaining a cross-section requires the combination of purely virtual corrections
with real emission amplitudes for an infrared finite result. This is done using subtraction methods,
which must also count as tools. There are meanwhile a dozen available at the level of NNLO.
Unfortunately none reach the generality or flexibility of NLO methods yet [50, 51]. For slicing
subtractions one typically starts with a factorization theorem, and for the necessary ingredients
some automatization is being worked on. For example the library SoftServe [52, 53] allows for the
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calculation of a class of soft functions in SCET, but with its current limitations it is currently only
used in the context of resummation.

Real emission contributions to NNLO calculations involve NLO calculations with an additional
leg that have to be calculated efficiently and numerically stable in infrared singular regions. The gold
standard are optimized analytical expressions, as for example available in MCFM [54]. In general,
one wants to make use of the great one-loop automatization advancements. Some libraries can give
one-loop amplitudes with the press of a button; either for any process like in Recola [55–58] or for
large pregenerated lists as in OpenLoops [59–61]. Further available codes are GoSam [62, 63] and
Samurai [64]. The packages Recola and OpenLoops can also compute NLO electroweak corrections
in their most recent versions. Last, libraries like QCDLoop [65, 66], Collier [67] and OneLOop [68] are
available for the evaluation of one-loop integrals when used with analytical amplitude expressions,
for example.

Parton distribution functions. The last part that enters collider cross-sections are PDFs. They
meanwhile constitute an equal or larger uncertainty than the hard multi-loop piece for a lot of
processes. This means we need the tools to push for their better understanding and higher precision.

The standard to interface PDF grids is LHAPDF [69], which offers a unified interface to dozens
of fits. To make actual PDF fits, one has to evaluate cross-sections many times in the fitting process.
This means that very fast evaluations with modified input parameters and PDFs are needed. For that
purpose grid interpolation tools like fastNLO [70–72], ApplGrid [73] and PineAppl [74] have been
developed. Toolkits like Hoppet [75] and Apfel [76] are used for the perturbative PDF evolution. Very
recently the NNPDF collaboration published their complete fitting infrastructure with version 4.0
[77], which opens the way for everyone to study data tensions and fitting methodology systematics
in more detail.

GPUs and Machine Learning. Emerging topics of significant interest in high-energy physics are
machine learning and the use of GPUs. While these are clearly useful tools for data analysis, i.e.
especially on the experimental side, for the frameworks covered in these proceedings their use is still
under exploration. For example machine learning has been used for phase-space sampling [78–80]
and amplitudes [81]. But the use of these techniques in the context of higher-order calculations
where infrared singular regions are probed deeply and numerical precision is important, is likely
difficult. GPUs also still have to prove to be useful for general multi-loop applications, because these
typically consist of large amplitude expressions and complex algorithms. On the other hand, linear
algebra problems and easily vectorizable problems like PDF evaluation can clearly benefit from GPU
evaluation [82].

Conclusions. In these proceedings we have briefly surveyed public tools for higher-order perturba-
tive collider calculations. We advocate for tools that are public, reusable, composable and hackable.
We also advocate for tools that perform one thing and one thing well. Tools that try to achieve too
many things at once are less suitable for the most complicated calculations on our higher-order
wish list that need sufficient flexibility. These are core principles that let our community prosper,
and we hereby encourage journals to include these criteria in evaluations. We also emphasize that
machine-readable loop integrals and amplitudes and the development of algorithms also comprise
such tools, as they are an integral part of higher-order calculations.
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