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1. Introduction

In April this year the Fermilab Muon g — 2 Collaboration has announced their long-awaited
first result of its series of measurements of the anomalous magnetic moment of the muon [1]. The
comparison between the measurement and the Standard Model (SM) prediction, as it has been
presented in the White Paper (WP) [2] showed a discrepancy at the level of 3.70 with respect to
the Brookhaven measurement [3]. The new experimental world average after the Fermilab result
differs from the SM by 4.2¢-. Table 1 summarizes the various contributions to the SM value for a,,
and shows that, as is well known, the two main sources of uncertainty are both hadronic and are the
leading-order contribution, namely the hadronic vacuum polarization (HVP), and the new structure
at next-to-leading order, namely hadronic light-by-light (HLbL).

Two further important news happened at the same time as the Fermilab announcement, both
coming from the lattice: the BMW calculation of the HVP contribution, the first to reach sub-percent
uncertainty, has been published [4] and a second lattice evaluation of the HLbL contribution has
appeared on the arXiv [5]. Concerning the former, while the article has been on the arXiv since
more than a year, the published version contained a slightly revised result which sits almost exactly
in the middle between the experimental and the WP number and has a comparable uncertainty. This
is an unsatisfactory situation which needs to be clarified. The second lattice result, on the other
hand, agrees very well with both the first lattice calculation of the HLbL contribution as well as the
data driven one, whose average is taken as the SM value for HLbL in the WP. Such a confirmation
is of course very welcome and makes the perspective of further reductions in the final uncertainty
for this contribution even more concrete.

2. Hadronic vacuum polarization

The evaluation of the HVP contribution has a long history and mainly relies on the formula first
discovered by Bouchiat and Michel sixty years ago [41], which expresses this contribution in terms
of the cross section e*e~™ — hadrons. Many experimental measurements (see [2] for a complete
list) have provided essential input for the application of this formula. In recent years mainly two
groups have made a systematic and complete evaluation of this contribution and provided regular
updates: the latest analyses of DHMZ [10] as well as KNT [11] constitute the basis for the SM
number presented in the WP. But there is more than that: other analyses, like the one by Jegerlehner
and collaborators [31] have also been considered and critically reviewed. Moreover, analyses of
exclusive channels which make use of theoretical arguments (like analyticity and unitarity) to better
constrain the data have also been used in the final average [8, 9, 42].

The method adopted to combine these analyses is the following: /) central values are obtained
by simple averages (for each channel and mass range); 2) it is always the largest experimental and
systematic uncertainty of the analyses considered which is taken; 3) half of the difference between
analyes (or between data by BABAR [43] and KLOE [44-47] in the 27 channel, if this is larger) is
added to the uncertainty. This led to the final result reported in Table 1, which has a final relative
uncertainty of 0.6%. This is larger than could potentially be achieved in view of the precision of
the data: but, as indicated, the combination procedure was aimed to err on the conservative side.
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Table 1: Summary of the different contributions to a, in the Standard Model [2] and comparison to the
present experimental world average.

Contribution Value x10'!  References
Experiment (E821) 116592089(63) Ref. [3]
Experiment (FNAL) 116592040(54) Ref. [1]
Experiment (World-Average) 116592061(41)

HVPLO (e*e™) 6931(40) Refs. [6-11]
HVP NLO (e*e™) -98.3(7) Ref. [11]
HVP NNLO (e*e™) 12.4(1) Ref. [12]
HVP LO (lattice, udsc) 7116(184) Refs. [13-21]
HLbL (phenomenology) 92(19) Refs. [22-34]
HLbL NLO (phenomenology) 2(1) Ref. [35]
HLDbL (lattice, uds) 79(35) Ref. [36]
HLbL (phenomenology + lattice) 90(17)

QED 116584718.931(104) Refs. [37, 38]
Electroweak 153.6(1.0) Refs. [39, 40]
HVP (e*e™, LO + NLO + NNLO) 6845(40)

HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116591 810(43)

Difference: Aay, = affp - aISIM 251(59)

After the WP was published, new results by the SND collaboration [48] as well as an update
by the BESIII collaboration [49] have been published. Their precision does not seem to be able
to significantly impact the current estimate, but they will motivate updates of the a!IVF

u evaluation.
New results by CMD-3 [50] and BABAR are also expected in the near future.

2.1 Lattice

Lattice is a relatively new player in the a,, field. The calculation of a two-point function on
the lattice is almost routine, but the precision requirements for this case make the calculation very
challenging. First of all, what matters is an integral of this correlator over all possible spacetime
points, and it happens that regions which contribute little to the final integral are particularly noisy
and thereby contribute much to the uncertainty. Moreover the calculation has to be done with
physical quark masses and all isospin-breaking effects included. The latter give a small correction,
but are particularly hard to calculate. The same is true for the so-called disconnected diagrams,
both in the isospin limit and with isospin breaking. Finally, the usual extrapolations to infinite
volume and to the continuum limit also become particularly expensive with such high precision
requirements.

This is the reason why the several lattice calculations [13-21] of this contribution which have
been discussed and combined in a final lattice result in the WP have reached a precision which is
about a factor four worse than that of the data-driven approach (see Table 1). The only exception is
the recently published BMW calculation [4], whose final result reads:

1004, VPHO (BMW) = 707.5(2.3)gta(5.0)syst = 707.5(5.5) |
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Figure 1: Comparison of different evaluations of the HVP contribution, both data driven (squares) as well
as lattice (circles) and mixed (triangle) and of the corresponding total result for aISIM - aZXp. The evaluations
above the lower dashed line have not been included in the WP average (grey band) and the lattice ones above
the upper dashed line have not been included in the WP lattice average (light-blue band).

which is higher by about 2.10 than the data-driven evaluation and, after adding all other contri-
butions summarized in the WP, much closer to the experimental value of a,. The situation is
illustrated in Fig. 1.

The discrepancy between the data-driven and the BMW result needs to be clarified. In view
of the long history of the data-driven approach, the vast experimental database which is used in the
calculation and all the independent checks which have been made over the years, I think that it is
justified to consider this as the reference SM value for a,. The BMW result is the first complete
lattice result with a precision comparable to the one of the data-driven approach. Given the relevance
of this calculation and of a possible discrepancy with the data-driven approach it is important to first
have a consensus lattice result based on different calculations relying on different discretizations
and calculational settings. Several collaborations are working hard to reach this goal.

In the meanwhile several comments can be made: the BMW collaboration has made a state-
of-the-art and complete calculation of this quantity, which has addressed all relevant sources of
systematic effects. Particularly relevant is the progress concerning the finite volume corrections
which are now under good control. The dominant source of systematic uncertainty is represented
by the continuum extrapolation. The raw data show a rather steep dependence on the lattice spacing
and need to be analytically corrected before a controlled extrapolation can be carried out. The
problem here is that there is no first-principle method available to calculate these corrections and
one has to rely on a (very reasonable) model. The BMW collaboration has addressed this point
and estimated the model dependence of the continuum extrapolation. As usual when estimating
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Figure 2: Left: Comparison of different lattice evaluations of the intermediate window quantity. Figure
courtesy of Davide Giusti [51]. Right: Weight functions in s to be used in the time-like integral representation
of a/IP to obtain the window-quantities defined on the lattice. Figure courtesy of Martin Hoferichter.

systematic uncertainties, it is difficult to judge the level of reliability of the final estimate.

Another important aspect is the potential impact of the higher value of a, on the running of
@em and on the value of @em(Mz) [52]: a,, is determined by an integral over the e*e™ — hadrons
cross section. The same cross section determines also the running aen, though via an integral
with a different kernel function: in particular @, (Mz) is much more sensitive to the high-energy

region than to the low-energy one, whereas for a, the opposite is true. Any increase in a, must

had

be accompanied by an increase in Aagy

(Mz): its size can only be estimated if one knows the
energy distribution of the corresponding increase in the hadronic correction. Given the way the
lattice calculation is made, this information is not available. Three different analyses [53-55]
have estimated the possible impact under different sets of assumptions. They all reached a similar
conclusion: unless one accepts to spoil the electroweak fit, the changes in the hadronic cross section
have to happen below 2 GeV, the lower the better. Since the region below 1 GeV is dominated by the
27 channel, a specific analysis was dedicated to such a scenario [56]: we investigated the possible

form and nature of the discrepancy with the data sets for this channel and pointed out correlations,

had

not only with Aagss

(Mz), but also with the pion charge radius.

Until other lattice collaborations will be able to reach the same level of precision for the
complete physical quantity, it is possible to compare the so-called “intermediate window quantity”,
which is easier to calculate since it is less sensitive to systematic effects. A comparison of different
lattice calculations for this window quantity (in the isospin limit) is displayed in Fig. 4 of Ref. [4] and
shows a disagreement at the level of ~ 20~ among lattice results of similar precision, in particular
between the BMW and the one by RBC/UKQCD [36] (whereas BMW agrees well with Aubin et
al. [20]). Several lattice collaborations are concentrating on this quantity and aiming to reach a
consensus. The current situation has been discussed by Davide Giusti in his talk at this year’s Lattice
conference [51, 57] and is shown on the left panel of Fig. 2. Reaching a satisfactory consensus for
this quantity is the most pressing goal of the lattice community interested in aEVP.

Interestingly, one can evaluate the same window quantity starting from e*e™ data: the weight

function originally defined in terms of Euclidean time for the lattice calculation can be translated
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in a weight function in s in the timelike region, as illustrated in the right panel of Fig. 2. The
outcome of this calculation! is also shown in the left panel of Fig. 2: the data-driven result agrees
with RBC/UKQCD and a few other preliminary results but is again lower than BMW and Aubin
et al. While this may not seem surprising at first, one has to consider that the weight function
in s suppresses the contribution from below 1 GeV. Such a disagreement seems to clash with the
hypothesis made above that most of the discrepancy for the hadronic cross section occurs below
1 GeV. Together with Martin Hoferichter and Peter Stoffer we have investigated this point more

quantitatively: in [56] we have obtained an explicit modification of the nr cross section below 1

HVP
u

quantity with this modified cross section the blue point in Fig. 2 does move slightly to the right but

GeV which would give a value of a in agreement with that of BMW. Evaluating the window
not nearly enough to fill the gap with the BMW?20 point. This implies that part of the modification
of the hadronic cross section needed to explain the BMW result must happen above 1 GeV. With
very minimal and reasonable assumptions about possible distributions of the change in the hadronic
cross section we reached the following conclusion: of the ~ 14 x 10~'? units of difference between
the data-driven and BMW evaluations of aEVP, at least 5 x 107!% have to originate from a change
in the hadronic cross section above 1 GeV. This is a model-independent lower limit. Note that if
all the shift is generated below 1 GeV it amounts to a ~ 2.5% relative change, whereas a shift of
5% 10719 generated between 1 and 2 GeV represents a ~ 5% relative change. Moreover the impact
on the EW fit will be larger.

3. Hadronic light-by-light

The evaluation of the HLbL contribution in the WP has been much improved with respect
to the time of the so-called “Glasgow consensus” [58] (see also [59, 60] for a somewhat different
assessment of the situation circa 2009). This is mainly due to the formulation of a dispersive
approach for HLbL [24, 61-63] which earlier had been deemed to be impossible. Table 2 illustrates
well the improvements, in particular for what concerns the first three rows of the table, added up
in the “subtotal” in the fourth row. As one can see by comparing the numbers in that row, the
uncertainty reduction has been six- to five-fold with respect to 2009. The remaining rows contain
smaller, but still relevant contributions for which the dispersive approach has not yet been applied to
its full potential. The reason is that there are conceptual difficulties in including narrow resonances
(beyond pseudoscalars) in such an approach: as it has been discussed in Ref. [24] the evaluation of
the contribution of single poles in the different channels gives results which depend on the choice of
the basis for the HLbL tensor, unless a set of sum rules are satisfied. This is automatically the case
for pseudoscalars, but not for any other resonances. A recent discussion of this problem for the case
of scalars can be found in Ref. [64], which also shows that progress in this direction is on-going.
But it is important to stress that in the four central rows (scalars to short-distance) a superficial
comparison of the numbers seems to indicate that uncertainties increased rather than decreased.
This just reflects the fact that all possible sources have been accounted for and the explicit goal was
to estimate them more conservatively. This is also seen in the way final uncertainties were added

Which also implies subtracting contributions from heavier valence quarks as well as isospin-breaking contributions—
all done using lattice input—to make the comparison to the lattice meaningful.
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Table 2: Comparison of different evaluations of the hadronic light-by-light contribution broken down into its
different components identified by the relevant intermediate hadronic state. PARV(09) is Ref. [58], N/JN(09)
Refs. [59, 60] and J(17) Ref. [31].

Contribution PdARV(09) N/IN(09) I(17) WP(20)
7%, n, n’-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
7, K-loops/boxes -19(19) -19(13) -20(5) -16.4(2)
S-wave 7 rescattering =7(7) -7(2) —5.98(1.20) =8(1)
subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)
scalars - — —
-1
tensors - - 1.1(1) } )
axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance - 21(3) 20(4) 15(10)
c-loop 2.3 - 2.3(2) 3(D)
total 105(26) 116(39)  100.4(28.2) 92(19)

for this subset of contributions: linearly in the WP, whereas most previous analyses added them
quadratically. For this reason the improvement in the uncertainty looks smaller than it actually is.

Among the remaining more uncertain contributions the axial vectors and the short-distance
part are the most relevant ones. For these contributions there is on-going activity and what has
been reported in the WP is a snapshot of an evolving situation. The issue of short-distance
constraints (SDC) for HLbL has been first pointed out by Melnikov and Vainshtein (MV) in a
seminal paper [22]: besides deriving these constraints, they also proposed a model for how to
satisfy them. This essentially consisted in including only the lightest pseudoscalar poles in the
HLDbL tensor (in the limit of (g — 2) kinematics) to satisfy the longitudinal SDC, and the lightest
axials to satisfy the SDC of the transverse components. The present precision requirements made it
necessary to go beyond this model. Different attempts in this direction have been made recently: in
our group we considered a tower of excited pseudoscalars to satisfy the longitudinal SDC [28, 65],
whereas two different groups have addressed both the transverse as well as the longitudinal SDC
by considering a tower of axial resonances within a model of holographic QCD [66—68]. While it
is clear that the axials have to play a prominent role in satisfying the SDC because the contribution
of excited pseudoscalars vanishes in the chiral limit, pseudoscalars have the unique advantage that
for them the ambiguities mentioned above are absent. This means that each of the two approaches
has drawbacks and only represents a step in the direction of a fully satisfactory solution of the SDC.
For this reason it is particularly important to compare these two model-dependent solutions. This
has been done in great detail in [69] and summarized in the left panel of Fig. 3 which shows the
contribution to a, of the states responsible for satisfying the longitudinal SDC as a function of a
lower cutoff Qmin on all three photon momenta. The figure shows that the solution in terms of
excited pseudoscalars agrees well with different variants of the holographic model of QCD, and that
both give a contribution significantly lower than was predicted by the original MV model: keeping
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Figure 3: Left: contribution to a, due to the longitudinal SDC for different solutions to the latter as a
function of a lower cutoff on the modulus of photon momenta (from [69]). Right: comparison of different
evaluations of the HLbL contribution. The two results below the dashed line have been averaged to yield
the result presented in the WP. Above the dashed line there is the recent lattice evaluation by the Mainz
collaboration and the three other phenomenological ones also shown in Table 2.

only the pion pole contribution for g —2 kinematics is well justified in the high-¢> region but is a bad
approximation at low g2. Taking into account also the transverse components led to the estimate
shown in Table 2 for the contribution of short distance. The figure also shows the curve obtained
by Liidtke and Procura [70] who analyzed the longitudinal SDC on the basis of a set of interpolants
and confirmed the estimate in the WP.

Other important developments concern the calculations performed by H. Bijnens and his group
of perturbative [71] and non-perturbative [72] corrections to the leading order OPE, which is
essentially given by the quark loop [22, 27]. These corrections allow for further reductions of the
uncertainties in the evaluation of this contribution, as discussed in [69]. Other theoretical aspects,
in particular concerning axial mesons, have been further discussed in [73-76].

3.1 Lattice

Compared to the two-point function which is relevant for HVP, evaluating the four-point
function which enters the HLbL contribution is significantly more difficult on the lattice (and
not only). In this case, on the other hand, the precision requirements are much less severe.
Attempts at calculating the HLbL contribution have started much later than those for HVP, and
much of the early (but still recent) work was devoted to developing a calculational strategy [77-81].
These efforts, which were carried out mainly by two lattice groups, RBC/UKQCD and Mainz,
have culminated in the first two complete lattice calculations of this contribution: first by the
RBC/UKQCD collaboration [36], a result which was early enough to be considered in the WP and
which in fact was averaged with the data-driven one and included in the SM prediction for a,,
see Table 1. The Mainz collaboration first published a result in the SU(3) limit [82], and only
very recently completed the calculation for physical quark masses [5], thereby confirming both the

RBC/UKQCD result as well as the data-driven one. Both results are shown in Fig. 3.
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4. Conclusions

I have briefly reviewed the current status of the Standard Model evaluation of the muon
anomalous magnetic moment concentrating in particular on the two main hadronic contributions,
HVP and HLbL, and their data-driven as well as lattice evaluations. The comparison with the
current experimental world average after the recent Fermilab result shows a 4.20 discrepancy,
which makes the muon g — 2 one of the most interesting quantities in the search for deviations from
the Standard Model and the quest for new physics. The present picture isn’t as sharp as it could be
because of the lattice calculation of the HVP contribution by the BMW collaboration, which shows
a discrepancy with the calculation based on the data-driven approach and, if confirmed, would move
the SM value of (g —2),, closer to the measurement. With lattice calculations it is always important
to make universality tests, namely to show that different lattice formulations of QCD (in particular
for what concerns fermion discretizations) lead to the same result in the continuum limit. This will
have to wait until other lattice collaborations will produce results of similar precision as the one
by BMW. Work in this direction, in particular for the simpler window quantity discussed above, is
on-going and will hopefully soon lead to a full clarification of the situation.
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