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We propose a new model for a homogeneous description of hadron-hadron and hadron-nucleus
collisions, the Gluon Exchange Model (GEM). While technically our model can be regarded as
a generalization of the Dual Parton Model by Capella and Tran Thanh Van, it is fundamentally
based on the number of exchanged color octets (gluons) and significantly extends the Fock space
of states available for the participating protons and nucleons.
In proton-proton collisions we provide an exact description of the final state proton and neutron
spectrum. What is remarkable is that unlike the original DPM, GEM successfully describes the
proton “diffractive peak” at high 𝑥𝐹 as a specific case of color octet exchange.
In proton-nucleus reactions we find that the projectile proton diquark, composed of two valence
quarks, cannot survive in more than about half of multiple proton-nucleon processes. Consequently
it must be very frequently disintegrated, leading to long transfers of baryon number over rapidity
space.

*** The European Physical Society Conference on High Energy Physics (EPS-HEP2021), ***
*** 26-30 July 2021 ***
*** Online conference, jointly organized by Universität Hamburg and the research center DESY ***

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:marek.jezabek@ifj.edu.pl
mailto:andrzej.rybicki@ifj.edu.pl
https://pos.sissa.it/


P
o
S
(
E
P
S
-
H
E
P
2
0
2
1
)
3
1
4

The Gluon Exchange Model for diffractive and inelastic collisions Marek Jeżabek

1. Introduction: the Gluon Exchange Model, or solving the puzzle of nuclear
stopping power

This paper will be concerned with “soft” (non-perturbative) proton-proton and proton-nucleus
collisions at a relatively moderate energy of

√
𝑠 ≃ 20 GeV in the nucleon-nucleon center-of-mass

system. The implications of the phenomenological studies performed therein touch all the “high”
energy scale including the LHC and cosmic regimes, in particular also nucleus-nucleus (“heavy
ion”) physics.

The main problem which this study will address is the following:

• in a non-perturbative proton-nucleus (pA) collision, how does the proton encode knowledge
on the number of nucleons which it collides with ?

The question above we define as “the puzzle of nuclear stopping power”, an issue with a long
record of research [1–8] which we will not stress here. In our paper [9] we remind some of the
arguments and difficulties encountered therein, in particular the internal contradictions inherent to
the sequential description which preclude encoding this information directly in the projectile energy,
as well as the failure of the original Dual Parton Model [5, 10] in describing the “nuclear stopping
power” estimated on the basis of Fermilab data [3, 6]. Improvements of the latter model in terms
of the string junction mechanism by Rossi and Veneziano [11] were described elsewhere [7, 8]. In
our paper [12] we proposed an independent approach (GEM, the Gluon Exchange Model) where
the latter encoding occurs through the partonic structure of the proton at the space-time moment of
the collision, folded with the exchange of a given number of color octets (gluons) and subsequent
creation of new color singlets (strings). A first (empirical) application of this approach, which we
consider as very different from [7, 8], to the multiple collision process is reported in Ref. [13]. In
this paper we give a concise summary of the main results of this work obtained up to now, and of
some of its implications.

2. Proton-proton and proton-nucleus collisions at CERN SPS energies

It is quite natural to investigate the question from Section 1 using baryon spectra in the final state
as experimental input. The latter, if experimentally precise enough, benefit from baryon number
conservation and are particularly sensitive to the initial state of the projectile in terms of momentum
(leading particle effects, Feynman scaling) and flavor content (isospin effects). Unfortunately
few datasets are characterized by sufficient completeness (protons, neutrons, strange baryons) and
coverage (preferably full) in rapidity. The latter requirement puts a stringent limitation on studied
collision energy, precluding e.g. the LHC regime. The NA49 [14] results on pp and minimum-bias
pC reactions at

√
𝑠 = 17.3 GeV [15, 16] constitute to the best of our knowledge the best dataset as far

as the above requirements are concerned. Rapidity distributions of protons and neutrons in pp and
“multiple” proton-carbon collisions1 are presented in Fig. 1. Several items are noteworthy: (1) the
high-rapidity “diffractive” peak in the proton spectrum in pp collisions is absent in the neutron

1Proton-carbon collisions in which the projectile proton collides with 𝑛 ≥ 2 nucleons. For more details see the
original papers [12, 13, 17].
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Figure 1: Rapidity distributions of net baryons (𝐵− 𝐵) in pp collisions and pC reactions in which the proton
collides with 𝑛 ≥ 2 nucleons (the plot comes from Ref. [9] and the original NA49 data from Refs. [15, 16]).

distribution and at the same time, vanishes in multiple pC collisions at 𝑥𝐹 > 0.9 (a comparison of
corresponding 𝑥𝐹 spectra can be found in Ref. [12]), (2) although the multiple pC reaction sample
corresponds to an average number of only about 2.6 proton-nucleon collisions per event [18], it
is characterized by a very sizable rapidity shift (baryon stopping) with respect to pp reactions,
and (3) the very strong isospin effects between protons and neutrons, present at high rapidity in
pp collisions, survive largely intact in the collision of a proton with multiple nucleons. These
observations appeared limiting enough to serve as phenomenological guidance for our formulation
of the GEM model where each soft inelastic process in the hadronic or nuclear collision occurs
through the exchange of a given number of gluons between the constituent partons. A detailed
account of the evolution of our understanding from the original Dual Parton Model (DPM [5, 10])
to GEM can be found in Ref. [13] and only the most important findings will be mentioned here.

3. The Gluon Exchange Model in pp collisions

The overall phenomenology of GEM remains similar to that of the Dual Parton Model and
can be illustrated via the cartoon (a) in Fig. 2. The exchange of one soft gluon in the pp reaction
changes the color configuration of constituent partons which leads to the formation of new color
singlets (strings, marked as arrows in the Figure). These strings (or “chains” following the original
nomenclature from [5, 10]) fragment into final state hadrons following given fragmentation functions
which, for the case of final state baryon spectra, have to be tuned to experimental pp data (unlike in
the earlier studies [1–8], the present dataset [15] includes protons and neutrons and therefore allows
for a full treatment of isospin effects).

Importantly and unlike the DPM, GEM considers a broad even if natural spectrum of Fock
states for the projectile proton (and also target nucleon). Thus already in pp collisions, the proton is
to be considered as a (potential) set of a color triplet (valence quark), antitriplet (valence diquark), as
well as a color triplet (sea quark) and antitriplet (sea antiquark). The general constituent momentum
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distribution follows the formula we gave in Ref. [12]:

𝜌𝑚(𝑥𝑞1 , 𝑥𝑞2 , 𝑥𝑞3 , 𝑥1, ..., 𝑥2𝑚) =

𝐶𝑚(𝑥𝑞1 + 𝑥𝑞2)1/2𝑥−1/2
𝑞3

2𝑚∏
𝑖=1

(𝑥2
𝑖 + 4𝜇2/𝑠)−1/2 · 𝛿

(
1 − 𝑥𝑞1 − 𝑥𝑞2 − 𝑥𝑞3 −

2𝑚∑︁
𝑖=1

𝑥𝑖

)
(1)

where 𝐶𝑚 is a normalization factor, 𝑥𝑞1 , 𝑥𝑞2 , 𝑥𝑞3 , 𝑥1, ..., 𝑥2𝑚 are the fractions of total momentum
carried by the three valence quarks and the 2𝑚 sea quarks and antiquarks (for pp collisions 𝑚 = 0
or 1), 𝜇 is the transverse mass of the sea quark, and 𝑠 is the square of collision c.m.s. energy.

Figure 2: Basic GEM diagrams in pp collisions. Magenta arrows connect newly created color singlets
(strings). The diagram (a) is inherited from the Dual Parton Model [10]. For more details, see Ref. [12].

(a) (b)

In pp collisions, this natural extension of the Fock space leads to the appearance of an additional
diagram illustrated in Fig. 2 (b), where the exchanged gluon couples to the virtual sea quark-antiquark
pair. As color algebra precludes color neutralization in this 𝑞𝑠 − 𝑞𝑠 pair after the exchange occured,
the new color singlets form in the way illustrated in the Figure keeping intact the valence structure
of the final state fast proton, which explains the absence of a “neutron diffractive peak”.

As it was demonstrated in Ref. [12], these two diagrams achieve an exact description of the
complete final state proton and neutron spectra in inelastic pp collisions, thus falsifying the long
standing opinion that the proton diffractive peak is originating from a mechanism different than
color exchange [19]. At the same time, the very strong suppression of the diagram (b) in the
collision of a proton with two or more nucleons explains the absence of the diffractive peak in pC
collisions in Fig. 1.

4. The diquark in pA collisions

As it was the case for pp reactions, the inclusion of a properly complete set of Fock states leads,
in proton-nucleus collisions, to a set of color exchange-induced configurations. A few examples of
these are illustrated in Fig. 3 (see Refs. [12, 13] for comparison). Only the diagram (a) is present
in the original Dual Parton Model, while some degree of similarity exists between our diagram (b)
and the “diquark-breaking” component obtained by Capella and Salgado largely based on the string
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Figure 3: Examples of GEM diagrams in pA collisions for 𝑛 = 2. The diagram (a) is inherited from the
Dual Parton Model [10]. For more details, see Ref. [12].

(a)

(c)

(b)

junction concept by Rossi and Veneziano (see Refs. [7, 8] and [11], respectively). Here we underline,
however, the rigorous character of GEM which relies on the pure exchange of gluons rather than
invoking string junction. This builds up an irrefutable difference between the two approaches with
GEM following closer, in our mind, the Ockham’s razor principle.

It is therefore not surprising that the diagram (c) from Fig. 3 has no counterparts in the
works [7, 8]. This diagram, resulting from a two-gluon color decuplet exchange with the valence
quarks of the projectile proton, places the latter in a color-symmetric configuration. Such a
configuration cannot anymore be described by a quark+diquark system.

This touches an important feature of the GEM model which is the purely effective nature of the
diquark. This feature, discussed in detail in Ref. [9], places our model in opposition to the original
DPM [5, 10] and, e.g., to the Wounded Constituent Model [20–22]. From the point of view of
color algebra the diquark is to be seen merely as a color antitriplet configuration and as such, it
can disintegrate whenever exchange with more than one color octet (gluon) occurs. Similarly as
indicated by the diagram (b), a valence and sea quark can “recombine” into an effective diquark
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(color antitriplet), the fragmentation mechanism of which will be similar to that of a valence
diquark-quark chain in pp collisions. It is evident that the appearance of the effective diquark built
of two sea quarks is another firm prediction of GEM, a subject which we discuss in more detail in
a separate paper [23]. It should be noted that all of this implies a qualitative difference between
single (𝑛 = 1) nucleon-nucleon collisions in pp reactions and multiple (𝑛 ≥ 2) nucleon-nucleon
collisions which occur in pA reactions (diagrams (b) and (c) cannot appear in single pp collisions).

These ideas have been tested in our papers [12, 13]. Our quantitative calculation [12] with
no free parameters added to the model shows that restricting the multiple collision process to the
valence diquark-preserving scenario fails to reproduce the multiple collision data from Fig. 1, very
significantly underestimating the “nuclear stopping power”, that is overestimating baryon yields
at high and underestimating baryon yields at low rapidity. The upper limit for this contribution
is 48%, leaving the remaining 52% for the disintegration of the valence diquark, with a possible
significant contribution of the scenario with creation of an effective diquark replacing the original
valence object like e.g., the 𝑞𝑣 − 𝑞𝑠 configuration shown in diagram (b) in Fig. 3.
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Figure 4: Description of rapidity distributions of net baryons in pC reactions in which the proton collides
with 𝑛 ≥ 2 nucleons, by the sum of diagrams (a), (b) and (c) with respective weights 0.46, 0.42 and 0.12.
The figure is re-drawn from Ref. [13] (each diagram includes the presence of “diffractive” nucleon emission
from the C target, see the original paper for details). The data points are the same as in Fig. 1 and the original
NA49 data come from Refs. [15, 16].

Our present, state-of-the-art description of the experimental pC data by the diquark-preserving
(Fig. 3 a), effective diquark (Fig. 3 b), and color decuplet (Fig. 3 c) contributions is presented
in Fig. 4. This - still quite rudimentary - application of the GEM model to the case of 𝑛 ≥ 2
proton-nucleon collisions provides a satisfactory description of the multiple collision process in
proton-carbon reactions. Keeping the valence diquark-preserving contribution close to its upper
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limit of 48% and leaving the remaining ∼50% to color decuplet and effective diquark diagrams
provides a good description of the overall baryon nuclear stopping power and inherits most of the
strong isospin (proton versus neutron) effects present in pp reactions.

5. Conclusions

This paper presents a short status report on our work on explaining the baryon stopping
phenomenon, or the puzzle of nuclear stopping power, by a new model of pure color octet (soft
gluon) exchange in pp and pA reactions.

Our results indicate that spectra of baryons are governed by color configurations of constituents,
that is valence and sea quarks.

They also point at the presence of a qualitative difference between single and multiple proton-
nucleon collisions, that is, between pp and pA reactions. In pp collisions, inelastic baryon spectra
including “diffractive” protons can be fully described by the exchange of one soft gluon coupling
either to valence quarks or to the sea quark-antiquark pair. In pA reactions the exchange of two or
more color octets brings new color configurations, revealing the purely effective character of the
diquark which can be either disintegrated or recombined from available valence and sea quarks,
which leads to stronger baryon stopping as a function of nucleus size and centrality.

The encoding of knowledge on the number of nucleons which the proton collides with proceeds
through the partonic structure of the proton, account taken of a properly complete ensemble of Fock
states. The increase of the nuclear stopping power in pA reactions is driven by the appearance
of new color configurations with disintegration of the valence diquark and possible appearance of
effective diquarks including sea quarks.
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