

Production of light nuclei in small collision systems

² measured with ALICE

a Alessandro Balbino*, on behalf of the ALICE Collaboration

- 4 Politecnico di Torino,
- 5 24, Corso Duca degli Abruzzi, Turin, Italy
- 6 INFN di Torino,

9

- 7 1, Via Pietro Giuria, Turin, Italy
- 8 E-mail: alessandro.balbino@polito.it

The energy densities reached in high-energy hadronic collisions at the LHC allow significant production of light (anti)nuclei. Their production yields have been measured as a function of $p_{\rm T}$ and charged-particle multiplicity in the ALICE detector for different collision systems and at different center-of-mass energies. One of the most interesting results obtained from such a large variety of experimental data is that the dominant production mechanism of light (anti)nuclei seems to depend solely on the event charged-particle multiplicity. Evidence for this comes from the continuous evolution of the coalescence parameter, the deuteron-to-proton and the ³He-to-proton ratios with the event multiplicity across different collision systems and energies. The

characterization of the light nuclei production mechanism is complemented by measurements of their production yields in jets, where hard QCD processes are dominant, and in the underlying event, which is dominated by soft QCD processes. In this contribution, recent results on the measurements of light nuclei production in proton-proton and proton-lead collisions at different center-of-mass energies are shown and discussed in the context of the statistical hadronization and coalescence models.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

^{***} The European Physical Society Conference on High Energy Physics (EPS-HEP2021), *** *** 26-30 July 2021 ***

^{***} Online conference, jointly organized by Universität Hamburg and the research center DESY ***

10 1. Nuclear matter production

Although at the LHC light (anti)nuclei are abundantly produced, their production mechanisms 11 are not completely understood. The light nuclei are characterised by a low binding energy ($E_{\rm B} \sim 1$ 12 MeV) compared to the temperature of chemical freeze-out, which is the stage in the hadronization 13 process when the abundance of particle species is fixed ($T_{ch} \sim 160 \text{ MeV}$). The study of light nuclei 14 production and the comparison with the predictions of theoretical models are crucial to understand 15 how these loosely bound objects can be formed and survive in such extreme conditions. Two 16 classes of phenomenological models are available, namely the statistical hadronisation [1] and the 17 coalescence [2] models. According to the statistical hadronisation model (SHM), (anti)nuclei are 18 produced at the chemical freeze-out, along with all the other hadrons. The SHM can describe the 19 production yields $\left(\frac{dN}{dy}\right)$ in central Pb–Pb collisions [3], including yields of nuclei, using only three 20 parameters: temperature T, volume V and baryo-chemical potential μ_B . In Pb–Pb collisions a grand 21 canonical approach is used, since the condition $VT^3 > 1$ is satisfied, where V and T are the system 22 volume and temperature, respectively. In pp and p-Pb collisions, characterised by a smaller volume, 23 this condition is not met and hence a canonical approach is used. In the canonical statistical model 24 (CSM) the local conservation of quantum numbers is required. In this work, the data are compared 25 with the prediction of THERMAL-FIST package [4], in which baryon number, strangeness content 26 and electric charge are exactly conserved. In the coalescence picture, nucleons that are close to 27 each other in phase space after chemical freeze-out can form a nucleus via coalescence [2]. The 28 main observable of the model is the coalescence parameter, defined for a nuclei of mass number A 29 as: 30

$$B_{\rm A} = \frac{E_i \frac{\mathrm{d}^3 N_{\rm i}}{\mathrm{d} p_{\rm i}^3}}{\left(E_{\rm p} \frac{\mathrm{d}^3 N_{\rm p}}{\mathrm{d} p_{\rm p}^2}\right)^A} \tag{1}$$

where the invariant spectra of the (anti)protons are evaluated at the transverse momentum of the 31 nucleus divided by its mass number, so that $p_T^p = p_T^A/A$. The coalescence parameter is related 32 to the probability to form a nucleus via coalescence [2]. Moreover, studies of the Underlying 33 Event (UE) can provide valuable insight when investigating nuclei production in small systems. 34 The UE is defined as the collection of all particles not originating from the primary scattering 35 and it is analysed by measuring particle production in three azimuthal regions: toward, transverse 36 and away, with respect to the highest-momentum track of a given event. In the transverse region 37 the particle density eventually becomes mostly insensitive to the hard component and the particle 38 production is driven by soft QCD processes, while hard interactions are dominant in the toward 39 and away regions. In this context the activity in the UE can be quantified using the self-normalised 40 charged-particle multiplicity in the transverse region $R_{\rm T} = \frac{N_{\rm ch,T}}{\langle N_{\rm ch,T} \rangle}$. Small values of $R_{\rm T}$ correspond 41 to an event topology dominated by the hard scattering, while large $R_{\rm T}$ values correspond to events 42 characterized by large UE activity. 43

44 2. The coalescence parameter

The coalescence parameter B_A has been measured in different collision systems as a function of the transverse momentum (p_T). In Fig. 1, B_2 in pp collisions at $\sqrt{s} = 13$ TeV and B_3 in p–Pb

Figure 1: B_2 as a function of p_T/A in pp collisions at $\sqrt{s} = 13$ TeV (left) and B_3 in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (right) for different multiplicity intervals.

Figure 2: B_2 [5–8] (left) and B_3 [5, 9, 10] (right) as a function of the average event multiplicity $\langle \frac{dN_{ch}}{d\eta} \rangle$ at $p_T/A = 0.75$ GeV/*c* and at $p_T/A = 0.73$ GeV/*c*, respectively. Data are compared with the predictions of the coalescence model. The dashed line and the black continuous one correspond to different parameterisations of $\langle \frac{dN_{ch}}{d\eta} \rangle$ with respect to the HBT radius.

⁴⁷ collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV for different multiplicity intervals are shown.

In pp collisions, B_2 shows a minor increase over the p_T range. In p–Pb collisions, a considerable increase of B_3 with increasing p_T is observed. The dependence of the B_A on the system size can be studied by measuring for each collision system and energy the value of B_A as a function of charged particle multiplicity $\langle \frac{dN_{ch}}{d\eta} \rangle$, which is related to the system size. Figure 2 shows B_2 and B_3 as a function of $\langle \frac{dN_{ch}}{d\eta} \rangle$ at $p_T/A = 0.75$ GeV/*c* and at $p_T/A = 0.73$ GeV/*c*, respectively.

⁵³ Data are compared with the calculations for the coalescence model for two different parameter-⁵⁴ isations of the system size. B_A evolves smoothly as a function of $\langle \frac{dN_{ch}}{d\eta} \rangle$, regardless of the collision ⁵⁵ system, suggesting a common production mechanism that depends only on the system size. At ⁵⁶ low multiplicity the system size is smaller than the nucleus size and B_A slightly decreases with ⁵⁷ multiplicity. On the other hand, at high multiplicity the system size becomes larger than the size of

Figure 3: Ratio between the p_{T} -integrated yields of nuclei and protons for deuterons (d/p) [5–8] (left), ³He (³He/p [5, 9, 10]) and ³H (³H/p [10]) (right). Data are compared with the predictions of the THERMAL-FIST package [4] and the coalescence model [11].

the nucleus and hence the decrease is more noticeable. Therefore, the global trend observed in the

⁵⁹ data is described by the coalescence model.

3. The ratio between nucleus and proton yields

In Fig. 3 the ratio between the $p_{\rm T}$ -integrated yields of nuclei and protons are shown for deuterons (d/p), ³He (³He/p) and ³H (³H/p).

Data are compared with the prediction of SHM obtained with the THERMAL-FIST package 63 and with coalescence calculations [11]. For ³He, results from both the two-body and the three-body 64 coalescence are reported. The yield ratios evolve smoothly as a function of multiplicity, as observed 65 for $B_{\rm A}$. This is another hint of a common particle production mechanism that depends only on the 66 system size. In both the panels of Fig. 3, two regimes can be seen. In the low multiplicity region, 67 the yield ratios increase with multiplicity. The agreement of multiplicity dependence of yield 68 ratios with CSM arises because of canonical suppression which is a consequence of conservation 69 of baryon number [4]. The area between the solid and dashed lines represents the prediction of 70 CSM for values of the source volume from 1 to 3 rapidity units and a temperature T = 155 MeV. 71 Experimental data suggest a source volume between 1 and 3 units of rapidity. In the coalescent 72 picture, the rise at low multiplicity reflects the interplay between nucleon yield, nucleus size and 73 source size. Both CSM and coalescence models can qualitatively describe the ratio between the 74 yields of nuclei and protons, except for nuclei with $A \ge 3$ in the intermediate multiplicity region. 75 In the high multiplicity region, the conditions for description using the grand canonical model are 76 valid. The experimental results show no dependence on multiplicity as predicted by the models. 77 The coalescence models also predict a saturation of the yield ratio at high multiplicity. 78

Figure 4: B_2 as a function of p_T/A in pp collisions at $\sqrt{s} = 13$ TeV in the toward region, for several R_T classes. Data are compared with the predictions from Pythia 8.3.

79 4. Underlying Event activity

In Fig. 4, B_2 measured in pp collisions at $\sqrt{s} = 13$ TeV in the toward region, for several R_T 80 classes, is compared with the expectations of Pythia 8.3 [12] simulations. The B_2 parameter has 81 a flat behaviour with $p_{\rm T}/A$ for all the $R_{\rm T}$ regions and is in agreement with the predictions of a 82 simple coalescence picture. Pythia 8.3 simulations can qualitatively reproduce the $p_{\rm T}$ dependence 83 and the mild $R_{\rm T}$ ordering. However, Pythia fails in reproducing the magnitude of the coalescence 84 parameter. Moreover it was observed that deuterons are mostly produced in the underlying event: 85 the recent results of deuteron production in jets [13] have shown that the fraction of deuterons 86 produced in the jet is between 8 and 15 %, increasing with increasing $p_{\rm T}$, while the majority of the 87 deuterons are produced in the underlying event. 88

89 5. Conclusions

The measurements of the coalescence parameter B_A and of the yield ratios d/p, ³He/p and 90 ³H/p as a function of the event multiplicity suggest a common production mechanism that depends 91 only on the system size. Coalescence can describe both the B_A and the yield ratios as a function 92 of multiplicity. CSM can qualitatively describe the evolution of yield ratios with the system size. 93 Using the current experimental results, it is not possible to discern between the different production 94 mechanisms of light nuclei. Moreover, the study of the deuterons produced in the underlying event 95 showed that the deuteron production is dominated by soft QCD processes, but larger data samples 96 would be needed in order to obtain more precise results and to expand this kind of analysis to other 97 nuclear species. However, the current ALICE upgrade campaign will allow data acquisition during 98 LHC Run 3 with a new Inner Tracking System, whose high granularity, improved geometry and very 99 low material budget will facilitate the measurement of (anti)nuclei in ALICE, leading to smaller 100 systematic uncertainties. Moreover with the increased data-acquisition rate it will be possible to 101 search for the production of heavier nuclei in small systems. With these improvements, it may be 102 possible to better understand the phenomena underlying the production of light nuclei. 103

Alessandro Balbino

104 References

- [1] A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stocker, *Production of light nuclei*,
 hypernuclei and their antiparticles in relativistic nuclear collisions, *Phys. Lett. B* 697 (2011)
 203 [1010.2995].
- [2] J.I. Kapusta, *Mechanisms for deuteron production in relativistic nuclear collisions*, *Phys. Rev. C* 21 (1980) 1301.
- [3] ALICE collaboration, Production of ⁴He and ⁴He in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the LHC, Nucl. Phys. A **971** (2018) 1 [1710.07531].
- [4] V. Vovchenko, B. Dönigus and H. Stoecker, *Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model*, *Phys. Lett. B* 785 (2018) 171
 [1808.05245].
- [5] ALICE collaboration, Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions
 at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 024917
 [1506.08951].
- [6] ALICE collaboration, (Anti-)deuteron production in pp collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 80 (2020) 889 [2003.03184].
- [7] ALICE collaboration, *Multiplicity dependence of (anti-)deuteron production in pp collisions* at $\sqrt{s} = 7$ TeV, Phys. Lett. B **794** (2019) 50 [1902.09290].
- [8] ALICE collaboration, *Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at* $\sqrt{s_{NN}} = 5.02$ TeV, *Phys. Lett. B* **800** (2020) 135043 [1906.03136].
- [9] ALICE collaboration, Production of deuterons, tritons, ³He nuclei and their antinuclei in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, Phys. Rev. C 97 (2018) 024615 [1709.08522].
- [10] ALICE collaboration, Production of $(anti-)^3He$ and $(anti-)^3H$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. C 101 (2020) 044906 [1910.14401].
- [11] F. Bellini and A.P. Kalweit, *Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider, Phys. Rev. C* 99 (2019)
 054905 [1807.05894].
- [12] T. Sjöstrand, *The PYTHIA Event Generator: Past, Present and Future, Comput. Phys. Commun.* 246 (2020) 106910 [1907.09874].
- [13] ALICE collaboration, *Jet-associated deuteron production in pp collisions at s=13 TeV*, *Phys. Lett. B* 819 (2021) 136440 [2011.05898].