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1. Introduction

In the past few years a significant amount of work has been done to extend the effort to make a
global fit for the dimension 6 EFT basis to all the LHC dataset. After the initial attempts where only
a few operators were considered and only Higgs channels included, we now have more sophisticated
tools, able to fit a large number of operators simultaneously [1, 2].

In arXiv:2101.03180 [3], we presented a fit of the LHC Run-2 electroweak sector, including
the relevant operators of the dimension 6 SMEFT basis at the linear level. We found that VBS data,
albeit still affected by relatively large experimental uncertainties due to the limited statistics, can
still show an improvement with respect to the diboson dataset only. It has been shown in previous
works that the main constraints to LHC fits come from Higgs data, and that diboson measurements
have a relatively low impact on the final results, as shown in [1, 2]. Nevertheless, the inclusion
of diboson and VBS data in this context represents a test for the electroweak symmetry breaking
mechanism (EWSB) and the results show that the former is in very good shape. In figure 1 we show
a summary of our results where we observe that adding the VBS information helps to improve the
precision of the diboson fit. This fact hints that, once more precise VBS results are available (in
particular, more differential data), the VBS can improve the VV fit substantially.

2. Two-dimensional fits

In order to go one step further in our analysis, we have now incorporated a series of two-
dimensional fits, in which only two operators are varied while all the rest are set to their SM values.
These are shown in figure 2, where we appreciate the complementarity between the diboson and
VBS channels. In the top row we show results for the Owww operator, the pure contribution
to gauge couplings. VBS naturally complements diboson processes in this case as it contains the
interplay between triple and quartic gauge couplings. If something was to be different with the
electroweak symmetry breaking mechanism, it would be likely to show up here, for example if the
Higgs would not be an SU(2) doublet, the ratio between these couplings would not necessarily be
proportional to the Higgs vacuum expectation value and tensions would appear in this particular
degree of freedom. The O,w and O,p operators, enter always by means of an HVV coupling.
In the bottom row we show results for these two: in the case of diboson processes, such operators
contribute as contamination in the s-channel whereas in VBS they enter through Higgs boson
exchanges in the t-channel, helping to remove their degeneracy. The last example shows the case of
the O,w p operator, which accounts for the mixing in the neutral sector. This operator is deemed
to be very well understood and constrained from electroweak precision measurements, but it is is
still very interesting to see the complementarity between diboson and VBS in this case.

These plots show the region containing the 95% of the posterior distribution samples obtained
after the 2 minimization. Whenever one degree of freedom is not affecting a specific process this
region appears as band, while when both the two operators are constrained the CL bounds appear
as an ellipse. In a two dimensional model at liner level in the EFT expansion is always possible to
find out a linear combination of Wilson coefficients that cancels exactly the EFT contribution. This
sort of flat direction coincide with the major axes of the ellipses presented here.
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Figure 1: Comparison of the magnitude of 95% CL intervals (top) and posterior distribution samples
(bottom) in three different settings: the VV only, the combined VV plus VBS marginalised and individual
fits, at the linear level in the EFT expansion. The operators are in the Warsaw basis [3]

3. Moving to dimension 8 and computational bottlenecks

Now that the global fits with the full dimension 6 basis at linear and quadratic level are well
underway, it is time to start thinking on adding dimension 8 operators [4]:
1

1
TEFT = OSM + 55 0ini,6 + F(O_sqﬁ + Tine,g) + ... (1)
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Figure 2: We display the regions containing the 95% of the posteriors distribution samples obtained for
different data subsets and for the complete dataset (VV+VBS). Operator definitions are given in [3].

Many options are available in the market, including the full dimension 8 basis [5, 6], as well as some
works selecting a subset of process dependent operators. These can be used to estimate the effects
of the dimension 8 contributions in particular channels, as shown in refs.[7, 8]. For the case of
VBS processes, an ad-hoc basis [9] was defined to account for anomalous quartic gauge couplings
(aQGCs), and it has been frequently adopted by the experimental collaborations. Several analyses
including bounds on dimension 8 operators! have been released by the experimental collaborations
in recent years. To name a few: [10-13].

Adopting this approach has the drawback that the basis is not complete as it neglects by
definition any contribution affecting triple gauge couplings: for example operators of the form
Og ~ (HTH)eijkW;;VW‘J,'le’,‘“ are not included.

To address this issue and given that this basis has now been widely used and experimental
constraints are available, we suggest a three-step procedure:

1. Perform a fit for the VBS channels including the dimension 6 basis as well as the aQCG one.
2. Extract the relevant dimension 8 operators from the complete basis and repeat the procedure.

3. Compare results and draw conclusions based on their consistency.

IThese analyses include only this restricted set of dimension 8§ operators, and no dimension 6 contribution.
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Furthermore including dimension 8 terms from the aQGC basis, could be very interesting, since it
allows for interactions that are traditionally forbidden by gauge invariance in the SM, for example
vertices of the form Z,Z,7,Z, or Z,,Z,y,y-. Non-SM-like couplings are important to ensure
that we are not missing a possible trace of new physics. The available experimental bounds show
that neutral aTCGs are very unlikely, but results on aQCGs are still not completely ruling them out.

Additionally, it is important to consider different scenarios for the EWSB mechanism, which
might shed light on the shape of the Higgs potential. For example, in the HEFT Lagrangian (2),
a non-linear representation for the Higgs field is adopted. The physical 4 field is deemed to be
independent from the goldstone bosons (w*, w™), for example by arranging them as a phase of
the covariant derivative. The EFT expansion then, is not performed by adding higher dimensional
operators regularized but a cut off scale. Instead, the expansion is in terms of //v, leading to a
different power counting:

h o h? 1
Luprr = |1+a—+b—+... | 9w "W + 50,hd"h + ... (2)
v % 2

This model has been studied in the particular context of VBS, the paradigmatic example of unitary
violations, in different publications,[ 14—16]. However extending it to reproduce the full LHC setup
still represents some technical challenge: most Monte Carlo generators assume BSM models to
be an extension of the SM, whereas in this Lagrangian the SU(2)xU(1) structure is removed and
reproducing experimental results becomes non-trivial. Specifically for a channel like VBS with a
6-fermion final state. This particular theory would particularly benefit from the Pseudo Observable
approach that we discuss in the following section.

4. Computational Bottlenecks and Pseudo Observables

At this stage it is important to reflect on the computational demands of performing such a
global fit. The fitting tool used here, SMEFiT [2] is based on a sampling procedure, and can
perform a quadratic fit with O(50) operators in a a couple hours working on multiple CPU. The
bottleneck though is on the prediction side. Reproducing accurately the experimental definitions,
parton shower set-up and selection cuts, which are different for each collaborations, is a non-trivial
exercise. To put it quantitatively: reproducing the SM prediction for a certain diboson process takes
a couple of CPU hours for the generation and showering of O(500k) events, plus a few minutes
for the analysis of the output files with Rivet?2. The same procedure for a VBS process (6-particle
final state) takes a few days already at LO.

Once the SM theory prediction agrees with the experimental one, one can move onto generating
the different EFT predictions, for the case of n operators, one needs to scale the CPU time (and disk
storage) by n for a linear prediction. Moving to quadratic terms, the situation worsens dramatically:
we need to calculate additional n predictions for each operator interfering with itself, as well as (g)
cross-terms. This tendency is illustrated in Figure 3.

The main alternative to circumvent this issue would be to define new quantities which are
easier to reproduce from the theory side, namely certain Pseudo Observables [17-19]. Some

2This is the most accurate approach as experimental data are published in HepData in the native Rivet format
(.yoda).
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Figure 3: Number of terms in the EFT expansion for a given observable. On the left we see the tendency up
to 59 operators, the dimension 6 case assuming flavour universality. On the right we see how the numbers
would grow as we add higher dimensional contributions.

works have pointed in this direction recently, with the main issues being that such observables
are process-dependent (one needs to find the optimal observable for a given process), and that,
if a certain technique is used to process the data (typically a neural network), the details of the
former would have to be passed on to the theory community alongside with the results. This
issue has been discussed in the past given that published data for differential distributions at LHC
often rely on machine learning techniques, and it is difficult to estimate their impact on the exact
final event selection. This question has been highlighted again recently in [20, 21], where some
solutions where proposed. Another interesting approach is that of Matrix Element methods, a type
of multivariate analysis techniques where predictions are compared at the level of the S-matrix
elements, independent of phase space definitions. A recent interesting proposal in this direction is
that of [22].

Last but not least, there is the issue of precision. It would be important to revisit our understand-
ing of precision measurements and the proton structure, in the context of the EFT interpretations,
to ensure we are not overlooking some new physics effects. Some works including the SMEFT
effects in PDF fits have recently been presented in [23]. On this note, it would be also interesting
to perform combined studies to understand the impact of the uncertainties that can be associated to
the determination of the SM parameters, in the context of non-SM-like scenarios like HEFT.

5. Conclusions

Now that global fits of the dimension 6 basis in the LHC dataset are well underway, it is time
to look into the near future and (re)design our strategy for the analysis of the forthcoming runs.
The main challenges we find are two: On the more technical level, the inclusion of higher orders
in the EFT expansion, needs of large computational resources. This issue might be circumvented
in the future if the theory and experimental communities agree on a common framework for the
publication of data and statistical models. On the broader side of the question, we have to ensure
that our results don’t fall into a self fulfilled prophecy. By assuming Standard-Model-like structures
we might be missing information on strongly coupled new physics. Understanding the shape of the
Higgs potential through direct HH and HH H production measurements seems to be slightly out of
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reach given the HL-LHC projections and alternative approaches should also be considered. This

task should be a priority for the collider phenomenology community, and EFT searches in the EW

sector should illustrate this fact.
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