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The Standard Model Effective Field Theory (SMEFT) is a universal way of probing New Physics
(NP) manifesting as new heavy particle interactions with the Standard Model (SM) degrees of
freedom, that respect the SM gauged symmetries. Higher order terms in the NP interactions
possibly lead to sizable effects, mandatory for meaningful phenomenological studies, such as
contributions to neutral meson-mixing, which typically pushes the scale of NP to energy scales
much beyond the reach of direct searches in colliders. I discuss for the first time the leading-order
renormalization of double-insertions of dimension-6 four-fermion operators that change quark
flavor by one unit (i.e., |AF| = 1, F = strange-, charm-, or bottom-flavor) by dimension-8 oper-
ators relevant for meson-mixing (i.e., |AF| = 2) in SMEFT, and consider the phenomenological
implications of contributions proportional to large Yukawas. Given the underlying interest of
SMEFT to encode full-fledged models at low-energies, this work stresses the need of considering

dimension-8 operators in phenomenological applications of dimension-6 operators of SMEFT.
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1. Introduction

One strategy in searching for signs of New Physics (NP) — namely, phenomena that cannot be
accommodated within the Standard Model (SM) — is the study of observables that are predicted
by the SM to be suppressed, as for instance flavour changing neutral currents. A different strategy
consists in looking for deviations in observables that are precisely predicted, such as the observables
that contribute to the extraction of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
in the SM, among which meson-mixing observables play an important role [1].

Since the latter observables must involve, compared to the initial and final states and external
momenta, the exchange of much heavier degrees of freedom (e.g., W, Z bosons), an Effective Field
Theory (EFT) provides at low energies a simpler picture of the underlying high-energy dynamics,
in which Wilson coefficients and higher dimensional operators carry the fingerprints of such heavy
particles. Similarly, EFTs can be used to investigate the effects of non-SM new heavy degrees of
freedom (e.g., W’, Z’), that lead to new contact interactions among the SM degrees of freedom at
low enough energies. The latter EFTs consist of higher dimensional operators suppressed by some
new large scale Anp, typical of the NP extension, that encode in particular the flavour aspects of
the new heavy sector, and their manifestation in observables that are suppressed in the SM or in
observables that are precisely predicted can provide clear hints towards the discovery of NP.

The Standard Model Effective Field Theory (SMEFT) consists of the whole set of higher
dimensional contact interactions that are consistent with Lorentz and the local symmetries of the
SM, and is particularly useful when a new weak interacting sector is considered, in which case it
is meaningful to keep only the first terms of the power series in Anp. In the case of operators of
dimension-6, the so-called Warsaw basis [2] is divided into eight categories, among which we have
four-fermions, ¥* (see Eq. (2) below). Recently, explicit bases of dimension-8 operators have been
built [3, 4], among which one identifies operators involving four fermions, some of which can be
thought of as composite dimension-2 Higgs-mass and dimension-6 four-fermion operators, H> X%,
or for instance “squared” dimension-4 Yukawa interactions, wzH X 2 H (see Eq. (3) below).

In the case of NP effective operators involving fermion fields, effects that change flavour by
one unity naturally lead to NP effects that change flavour by two units, which in the quark sector
is efficiently probed by meson-mixing. This is going to be the main interest here, namely, the
leading effect of double-insertions of dimension-6 encoded in dimension-8 operators, cf. Fig. 1;
to spell out, the focus is on the renormalization of such double-insertions. Then, we will discuss
phenomenological implications for one particular set of four-fermion operators.

Q"

Figure 1: Double-insertion of dimension-6 |AF| = 1 operators (left), and tree-level single-insertion of
dimension-8 |AF| = 2 operators (right). Filled circles represent the higher-dimensional effective interactions.
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2. Effective operators in meson-mixing

One illustration of the use of an EFT is provided by meson-mixing in the kaon sector in the
SM [5-7]. Different flavours of the same type (here, up-type) can be combined as a result of the
Glashow-Iliopoulos-Maiani (GIM) mechanism [8]. There are three sets of contributions that are
qualitatively very different, according to the elements of the CKM matrix: boxes involving (1) top-
and up-,! (2) charm- and up-, (3) charm-, top- and up-quarks.? At the matching scale ugw (where
W,Z,H,t are integrated out and the first EFT is built from the full SM), case (1) is reproduced
in the EFT by dim.-6 operators that change flavour by two units (|AF| = 2), and cases (2) and (3)
by dim.-6 operators that change flavour by one unity (|JAF| = 1), at the leading-order in the strong
coupling. A (further) suppression due to the GIM mechanism is the elimination of large logarithmic
contributions in the second case; at the same time, it makes double-insertions of dim.-6 operators
finite in case (2), i.e., they do not require renormalization by dim.-8 operators. GIM does not
operate in the same way in case (3), for which the main contribution is given by a large logarithm;
simultaneously, GIM does not eliminate the divergence in double-insertions of dim.-6 operators,
and case (3) requires renormalization by dim.-8 operators.

An analogous picture can be drawn in SMEFT. We consider a case analog to (3) above. First
of all, we consider that the underlying NP sector does not generate contributions to dim.-6 [AF| =2
operators, or at least that these contributions are suppressed.> Then, we consider that a possible
GIM-like mechanism in the NP sector does not eliminate the need to renormalize double-insertions
of dim.-6 operators, i.e., large logarithms are present. Under these assumptions, the leading
contribution to meson-mixing is captured by double-insertions of dim.-6 operators, that requires
renormalization by dim.-8 operators.

To describe the resulting mixing of operators quantitatively, one must determine the anomalous
dimension tensor y;; ,: given a set of Green’s functions with two insertions of dim.-6 operators
(indexed by i, j) one calculates the counter-terms proportional to dim.-8 operators (indexed by n),
needed to renormalize the divergences resulting from the double-insertions. Large logarithms are
resummed via the Renormalization Group (RG) evolution:

d s 6 6 8
u@Ci "(1) = 20,7 W (1) yijin + ZmCin (1) Ymn (1)

where the superscripts of the Wilson coeflicients give the dimension of the corresponding operator.
Solving these RG equations, the term proportional to the two dim.-6 Wilson coefficients, Cl@ (Anp)
times C]@ (Anp) (assumed non-zero), leads to the logarithm log(Anp/uew ), analog to the loga-
rithmic enhancement of case (3) above; also under the assumptions of the previous paragraph, the
values of the dim.-8 Wilson coefficients C,ES) (Anp) are sub-leading (in the strong coupling).

For simplicity, we focus on double-insertions of the same operator, with the same flavour
content; furthermore, we focus on double-insertions of four-fermion operators. Although here we
focus on meson-mixing, a similar discussion would hold for rare decays.

!Case (1) is the dominant contribution to neutral-B ;) meson-mixing in the SM.

2The same qualitative discussion holds for the different grouping of contributions considered in [9].

3For instance, in Left-Right Models the large masses of the extended (neutral) scalar sector suppress their tree-level
contributions to meson-mixing, see e.g. [10].
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flavours B(f=0b,i=4d) B (f=b,i=y¥) K(f=s,i=4d)
S : eyt ~(1) 2 1 ~(1) 2 1 ~(1) \2 1
%;D 33fi, 33i)" | (Chue)™l < Gz | 1(Chuga)”| < armayr | M(Chuya) 3 < G
Rz . i ~(1) 2 1 ~(1) 32 1 ~(1) 0 \2 1
f33l ’ (133f)‘ |(Cquqd) | < (4.8T8V)4 |(Cquqd) | < (2.6TCV)4 |Im{(Cquqd) }| < (37T8V)4
- : N ~(8) 2 1 ~(8) 2 1 ~(8) 2 1
g 33fi, 33i)" | (Couea)™l < Gamevy | 1(Cquga)”| < Gamayr | M(Couya) 3 < G
° (33 £ 5(8) 2 1 5(8) 2 1 ~(8) 2 1
f33l ’ (133f)‘ |(Cquqd) | < (6.1T8V)4 |(Cquqd) | < (3.4TCV)4 |Im{(Cquqd) }| < (47T8V)4

Table 1: Bounds on the Wilson coefficients of the operators in Eq. (2). The first column indicates the flavour
indices (bounds correspond to the combination of the two cases provided, with no interference). The three
remaining columns give bounds accordingly to the meson system. Limits are 95% Confidence Level bounds.

2.1 Example

We discuss a specific example, corresponding to the following two operators:

dim-6: Qi = (7" wenn(3"d) . Qi) = (" T w)emn("T"d) 2)

where u, d are right-handed quark fields of respectively up- and down-type flavours, and ¢ are
left-handed quark fields; flavour and color indices are omitted,* while weak-isospin indices are
indicated by m, n. With these two operators, we have contributions to meson-mixing as shown in
Fig. 1 (left) in which we consider that the internal fermions running inside the loop are top-quarks.
The resulting effect is then proportional to large Yukawas. There is also some enhancement from
the color-group structure of these diagrams. The relevant dim.-8 operators are the following ones:

. ingl — — — —
dim.-8: QIS = (GdH)(qdH), Q%) = (GT*dH) (GT*dH) 3)
which are required to renormaize double-insertions of the operators in Eq. (2).

Since here the internal flavour is a top, below the EW scale the relevant operators are:

low-energies:  OY° = (JE&8) (Wheh), OV = (Geeh) (Wheg (4)

where «, 8 are color indices, and flavours are ¥, ¢ = b, s, d. Their hadronic matrix elements are
calculated in [11, 12], which are chirally enhanced in the case of kaons.

Finally, one sets constraints on the NP Wilson coefficients of the operators in Eq. (2) based
on their contributions to different meson-mixing observables. We exploit the bounds provided in
[13, 14] on generic NP contributions. Despite being an effect coming from a dim.-8 operator and
being generated at one-loop, given the previous enhancements and the precision with which many
of these observables are known, one reaches a sensitivity to multi-TeV NP effects, as shown in
Tab. 1 and Fig. 2, for both singlet and octet structures. A certain number of comments is in order:

* Sub-leading effects above the EW scale may be numerically relevant if the leading logarithm
is not largely dominant; their determination, however, is beyond the scope of this work.

¢ Short-distance QCD effects below the EW scale have been included [15].

4The matrices T4 are normalised as tr{TATB} = 2 §4B.



Probing squared four-fermion operators of SMEFT with meson-mixing Luiz Vale Silva

50|

10

singlet

singlet

New Physics scale in TeV
singlet

—h

Amyg: |(Cquqa)’l Amg: |(Cquqa)’l |ex]: [1M{(Cquqa)*}

Figure 2: Bounds on the NP Wilson coefficients of the contact interactions in Eq. (2). The vertical axis
corresponds to the typical scale found in Tab. 1. This plot shows sensitivity to multi-TeV NP effects.

* Other observables can also constrain the same NP effective couplings; e.g., many other
operators are radiatively generated through single-insertions [16—18]; it has been explicitly
verified that these do not lead to the main phenomenological bounds in the present example.

The anomalous dimension tensor for the present example together with those for an enlarged
set of operators will be provided in a future publication. Other than top-loops, one can also have
other internal heavy flavours, namely, charm- and bottom-quarks, and tau-leptons (much heavier
than kaons). In these cases double-insertions have also to be considered below the EW scale,
with a different set of anomalous dimension tensor elements. A further complication is that other
dim.-8 operators can also show up, schematically: w4HD, ¢4D2, and w“X . Their contributions
are however suppressed by the external masses (or the external momentum scale) and sub-leading
if the internal flavour is heavy enough.

3. Conclusions

I have discussed effects from a generic heavy NP sector that are encoded in higher dimensional
operators. More exactly, I have discussed the renormalization by dim.-8 operators of double-
insertions of dim.-6 operators, where the latter changes flavour number by one unity. At energy
scales much below the characteristic scale of NP, the effects of double-insertions are constrained by
meson-mixing observables, which receive suppressed contributions from the SM that are precisely
predicted in many cases. Given the level of experimental accuracy reached for these observables,
even loop-suppressed double-insertions lead to meaningful and powerful bounds on NP, probing
energy scales much beyond the direct reach of colliders.
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