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The Casimir effect is one of the most direct manifestations of the existence of the vacuum 

quantum fluctuations, discovered by H. B Casimir in 1948. On the other hand, 

Lorentz invariance is one of the main and basic concepts in special relativity, which states 

that, the laws of physics are invariant  under Lorentz transformation. In this work, we 

calculate the corrections imposed by LIV on Casimir effect (force). This may provide a 

direct probe to test LIV in nature. 
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Introduction 

 

Symmetries play a fundamental role in theoretical physics. Lorentz and CPT symmetries 

are fundamental in the Standard Model. Lorentz invariance is also in the foundation of 

the general relativity theory. General relativity and the standard-model of particle physics 

provide a very successful framework for describing and explaining most of the observed 

physical processes and phenomena in nature. In recent years there has been considerable 

scientific interest in the possibility of Lorentz invariance violation (LIV). It would be a 

major discovery and could potentially provide valuable information about a possible 

theory of quantum gravity. The general framework characterizing such violations is the 

Standard-Model Extension (SME), which incorporates General Relativity and the 

Standard Model. This violation can occur for photons, neutrinos, muon spin-precession,  

atoms as well as hadrons such as kaons, protons and neutrons. Extensive experimental 

efforts have been made to set up upper bounds on the LIV coefficients in all sectors of the 

SME. 

 

Casimir effect and Lorentz invariance violation 

 

The Lagrangian density for the photon sector of the minimal SME is as follows [1]: 

𝐿𝑝ℎ𝑜𝑡𝑜𝑛 = − 
1

4
𝐹µ𝜈𝐹

µ𝜈 −
1

4
(𝐾𝐹)𝑘𝜆𝜇𝜈𝐹

𝑘𝜆𝐹𝜇𝜈 +
1

2
(𝐾𝐴𝐹)

𝑘𝜖𝑘𝜆𝜇𝜈𝐴
𝜆𝐹𝜇𝜈 − 𝑗𝜇𝐴𝜇                                    (1)                

The small  coefficients                           control the Lorentz invariance violation (LIV) 

which are considered constant. Variation of this Lagrangian  yields the inhomogeneous 

equations of  motion (modified Maxwell equations) [1]:  

𝜕𝛼𝐹𝜇
𝛼 + (𝐾𝐹)𝜇𝛼𝛽𝛾𝜕

𝛼𝐹𝛽𝛾 + (𝐾𝐴𝐹)
𝛼𝜖𝜇𝛼𝛽𝛾𝐹

𝛽𝛾 + 𝑗𝜇 = 0                                                                (2) 

To study the effects of LIV on electromagnetic phenomena, a new sets of coefficients 

are introduced [1]:  

 

 

 

                                                                                                                             (3)                                                                    

 

 

 

The electric field E ( D ) and the magnetic field B ( H ), which satisfy in the relations 

𝐷⃗⃗ = 𝝐𝐸⃗  and 𝐻⃗⃗ =
1

𝜇
𝐵⃗  also receive corrections due to LIV as follows: 

𝐷⃗⃗ = (𝜖 + 𝜅𝐷𝐸
𝑣𝑎𝑐𝑐𝑢𝑚)𝐸⃗ +𝜅𝐷𝐵

𝑣𝑎𝑐𝑐𝑢𝑚𝐵⃗  

𝐻⃗⃗ = (
1

𝜇
+ 𝜅𝐻𝐵

𝑣𝑎𝑐𝑐𝑢𝑚) 𝐵⃗ +𝜅𝐻𝐸
𝑣𝑎𝑐𝑐𝑢𝑚𝐸⃗                                                                                                                (4) 

The electromagnetic energy density is then given by the following expression:  

𝑢𝐿𝐼𝑉 =
1

2
[(𝜖 + 𝜅𝐷𝐸

𝑣𝑎𝑐𝑐𝑢𝑚)𝐸⃗ + 𝜅𝐷𝐵
𝑣𝑎𝑐𝑐𝑢𝑚𝐵⃗ ]. 𝐸⃗ +

1

2
[(

1

𝜇
+ 𝜅𝐻𝐵

𝑣𝑎𝑐𝑐𝑢𝑚) 𝐵⃗ + 𝜅𝐻𝐸
𝑣𝑎𝑐𝑐𝑢𝑚𝐸⃗ ] . 𝐵⃗                                   (5) 
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After some calculations and using the fact that 
) )( (

jk kj

DB HE  
 [1], one can show that : 

LIV LI LIu u u  where LIVu ,   LIu  and  LIu  are the electromagnetic energy density 

in thevpresence of  Lorentz invariance violation, the Lorentz invariant electromagnetic 

energy density and the corrections on it, due to LIV, respectively. The energy density 

could be written as  
(1 )

LIV LI
Lu u 

where:        
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 
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 The quantized Hamiltonian can be written as: 

†† † 1
( )

2

1 1
( ) ( )

2 2
k k k

k

k k k k k k k

k k

a aH a a a a n      
                                                  (7)                                                                                                   

where 𝜔𝑘 = 𝜔𝑘
0 + 𝛥𝜔𝑘

0 .  𝜔𝑘
0  is the frequency in the absence of  LIV and  𝛥𝜔𝑘

0  is the 

correction due to LIV.  𝜔𝑘  may be written as  𝜔𝑘 = (1 + 𝐿)𝜔𝑘
0  where 𝐿 → 0  in the 

absence of LIV. 

Now we obtain the Casimir effect for two perfectly conducting metals. One can describe 

electromagnetic field as if it is made of two scalar massless fields, one satisfying 

Dirichlet boundary conditions and the other subject to Neumann conditions[2]: 
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So the sum of all the eigenvalues is [2]: 
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Using zeta-function regularization method which starts by replacing the power 
1

2
 in the 

integrand by −
𝑠

2
 , we have [2]: 

 

                                                                                                                           (10) 

 

 

 

 

 

 

 

 

 

After some calculations, we will have: 
2 2

0 0( , ) (1 )L a L  
                                                                                                   (11) 

Following the same method as Ref.[2], we obtain the expression for the pressure in the 

presence of LIV:  

P(L,a)=(1+L)𝑃(𝑎) ∝
(1+𝐿)

𝑎4                                                                                                 (12) 

It is observed that, the effects of LIV on Casimir force (pressure) consists  in a 

multiplicative factor.  

 Using the accuracy of experimental measurement of Casimir Force which is 1.6   pN, 

one can put an upper bound on the LIV parameter. The Casimir force for two perfectly 

conducting parallel plates of area ‘A’ separated by a distance ‘a’ is given by [3]: 

 

                                                                                                                      (13)  

 

It is a strong function of ‘a’ and is measurable only for a < 1 micrometer. If we take  𝑎 ≈

0.01 micometer, the accuracy of the mesurment of the Casimir force ≈ 1 𝑝𝑁 = 10−12𝑁 [3] 

and a 1.25 cm diameter optically polished sapphire disk as the plate, we obtain the fol-

lowing bound for the LIV parameter “L”: 

 
51.6 10L                                                                                                                                        (14) 
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