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We compute high-order baryon number fluctuations at finite temperature and density within a
QCD-assisted low energy effective field theory. Quantum, thermal and density fluctuations are
incorporated with the functional renormalization group approach. Quantum and in-medium fluctu-
ations are encoded via the evolution of renormalization group flow equations. The resulting fourth-
and sixth-order baryon number fluctuations meet the lattice benchmark results at vanishing den-
sity. They are consistent with experimental measurements, and in particular, the non-monotonic
dependence of the kurtosis of net-baryon number distributions on the collision energy is observed
in our calculations. This non-monotonicity arises from the increasingly sharpened chiral crossover
with the decrease of collision energy.
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1. Introduction

Recent years have seen significant progress in the studies of QCD phase structure at finite
temperature and densities from both the theoretical and the experimental side. The pseudo-critical
temperature of the chiral crossover at vanishing baryon chemical potential 𝜇𝐵 = 0 with physical
quark masses has been determined with high accuracy [1, 2], and in the chiral limit, the critical
temperature has also been extracted [3, 4]. Lattice simulations of QCD phase boundary, QCD
thermodynamics, etc., have been extended to the regime of 𝜇𝐵/𝑇 . 2 ∼ 3 [1, 2, 5–8]. Remarkably,
first-principle calculations of functional QCD, e.g., functional renormalization group (fRG) and
Dyson-Schwinger equations (DSE), by now show converging predictions for the chiral phase struc-
ture of QCD, see [9–12]: at 𝜇𝐵 = 0 lattice benchmarks are met. Within the regime of quantitative
reliability of the current functional computations, 𝜇𝐵/𝑇 . 4, no critical end point (CEP) is found.
In turn, the predictions for the location of the CEP or the onset of new physics converge within the
regime (135 , 450 ) MeV . (𝑇CEP , 𝜇𝐵CEP

) . (100 , 650) MeV, outside the regime of quantitative
reliability of the current functional computations.

In experiments signs for a non-monotonic dependence of the kurtosis of net-proton number
distributions on the collision energy are observed with 3.1𝜎 significance for central collisions
by STAR collaboration [13]. The measurements have recently been extended to the sixth-order
cumulants [14]. In this proceeding, we present results from a QCD-assisted low energy effective
field theory (LEFT) within the fRG approach to study high-order baryon number fluctuations at
finite temperature and baryon chemical potential. This LEFT is benchmarked with lattice results
at vanishing chemical potential, and the results at finite density are confronted with experimental
data for the fourth- and sixth-order cumulants of net-proton number distributions. Emphasis will
be put on the underlying reason accounting for the non-monotonic collision-energy behavior of
the high-order baryon or proton number fluctuations. Due to the restriction on the length of this
proceeding, more details about this work can be found in [15].

2. QCD-assisted LEFT within the fRG approach

We start with a brief overview on the QCD-assisted low-energy effective field theory used in
this work, for more details see [15]. Its effective action reads for 𝑁 𝑓 = 2 flavors,

Γ𝑘 =

∫
𝑥

{
𝑍𝑞,𝑘𝑞

[
𝛾𝜇𝜕𝜇 − 𝛾0(𝜇 + 𝑖𝑔𝐴0)

]
𝑞 + 1

2
𝑍𝜙,𝑘 (𝜕𝜇𝜙)2 + ℎ𝑘 𝑞

(
𝑇0𝜎 + 𝑻 · 𝝅

)
𝑞 +𝑉𝑘 (𝜌, 𝐴0) − 𝑐𝜎

}
,

(1)

where 𝑘 denotes the renormalization group (RG) scale. Moreover,
∫
𝑥
=
∫ 1/𝑇
0 𝑑𝑥0

∫
𝑑3𝑥, where 𝑇

is the temperature. Here 𝑞 = (𝑢 , 𝑑)𝑇 and 𝜙 = (𝜎, 𝝅) are the quark and meson fields, respectively,
and 𝑍𝑞,𝑘 , 𝑍𝜙,𝑘 are their wave function renormalizations. The quark chemical potential in the flavor
matrix is given by 𝜇 = diag(𝜇𝑢 , 𝜇𝑑), and 𝜇𝑢 = 𝜇𝑑 = 𝜇𝐵/3 is assumed in this work, with the
baryon chemical potential 𝜇𝐵. In Eq. (1), (𝑇0,𝑻) are the 𝑈 (2) generators in the flavor space with
Tr(𝑇𝑎𝑇𝑏) = 1

2𝛿
𝑎𝑏 (𝑎, 𝑏 ∈ 0, 1, ...3), and the Yukawa coupling is denoted by ℎ𝑘 . The effective

potential 𝑉𝑘 (𝜌, 𝐴0) is invariant under the transformation of 𝑂 (4) with 𝜌 = 𝜙2/2, and 𝐴0 is the
temporal component of the gluon background field. The 𝑐-term in Eq. (1) breaks chiral symmetry
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Figure 1: Dependence of 𝑅𝐵
42 = 𝜒𝐵

4 /𝜒
𝐵
2 (left), 𝑅𝐵

62 = 𝜒𝐵
6 /𝜒

𝐵
2 (middle), and 𝑅𝐵

82 = 𝜒𝐵
8 /𝜒

𝐵
2 (right) on the

temperature with 𝜇𝐵 = 0. We compare the results of fRG-LEFT with those of lattice QCD by the HotQCD
collaboration [6] and the Wuppertal-Budapest collaboration (WB) [5]. The inset in the plot of 𝑅𝐵

82 shows its
zoomed-out view. Results of a hadron resonance gas (HRG) model [16] are also presented for comparison.

explicitly and its strength determines the current quark mass. The full quantum effective action is
recovered from the flow equation at 𝑘 → 0.

The first-principle computations for functional QCD [10] entail, that the dynamics of 2+1-
flavor QCD can be well captured based on that of 2-flavor via a scale matching for the temperature
and baryon chemical potential, to wit,

𝑇 (𝑁 𝑓 =2) = 𝑐
𝑇
𝑇 (𝑁 𝑓 =2+1) , 𝜇

(𝑁 𝑓 =2)
𝐵

= 𝑐𝜇𝐵
𝜇
(𝑁 𝑓 =2+1)
𝐵

. (2)

With the temperature dependence of the fourth-order baryon number fluctuations and the curvature
of the chiral phase boundary calculated in both 2+1- and 2-flavor QCD, one is able to determine the
coefficients in Eq. (2), as 𝑐

𝑇
= 1.247(12) and 𝑐𝜇𝐵

= 1.110(66) [15]. The errors here comprise the
systematic errors in our theoretical calculations, which are denoted by error bands in our numerical
results in Sec. 3.

The thermodynamic potential density for a grand canonical ensemble with temperature 𝑇 and
baryon chemical potential 𝜇𝐵 reads

Ω[𝑇, 𝜇𝐵] =𝑉𝑘=0(𝜌, 𝐴0) − 𝑐𝜎 , (3)

where the sigma meson field 𝜎 and the temporal gluon field 𝐴0, or its closely related counterpart,
the Polyakov loop 𝐿 (𝐴0), are on their respective equations of motion. With the thermodynamic
potential density in Eq. (3), or the pressure with 𝑝 = −Ω, one is able to obtain baryon number
fluctuations of a given order 𝑛, as follows

𝜒𝐵
𝑛 =

𝜕𝑛

𝜕 (𝜇𝐵/𝑇)𝑛
𝑝

𝑇4 . (4)

In experiments it is more advantageous to make use of the ratio between the 𝑛- and 𝑚-th order
fluctuations, i.e.,

𝑅𝐵
𝑛𝑚 =

𝜒𝐵
𝑛

𝜒𝐵
𝑚

. (5)

3. Numerical results and discussions

In Fig. 1 we show the fourth-, sixth-, and eighth-order net-baryon number fluctuations divided
by the quadratic one as functions of the temperature at zero baryon chemical potential. Our
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Figure 2: Left: Quartic baryon number fluctuation 𝑅𝐵
42 (𝑇, 𝜇𝐵) calculated within fRG-LEFT in the phase

diagram spanned by the temperature and baryon chemical potential. The black dashed line denotes the chiral
crossover of 𝑁 𝑓 = 2 + 1-flavor QCD obtained in a first-principle fRG-QCD computation [10]. The green
dotted line represents the freeze-out curve, and lines 𝜇𝐵/𝑇 = 2, 3, 4 are also depicted. Right: Ratio of cubic
to quadratic baryon number fluctuations 𝑅𝐵

32 as a function of the collision energy obtained with the freeze-out
curve shown in the left panel. Experimental data for the skewness of the net-proton distributions 𝑅

𝑝

32 with
centrality 0-5% [13] are presented for comparison.

calculated results in the QCD-assisted LEFT within the fRG approach are compared with the lattice
results by the HotQCD collaboration [6] and the Wuppertal-Budapest collaboration (WB) [5]. Note
that the lattice results of 𝑅𝐵

62 and 𝑅𝐵
82 have not yet been extrapolated to the continuum limit, and

there is still significant discrepancy for them between the two lattice collaborations. Our results
are in quantitative accordance with those from WB, and qualitatively consistent with those from
HotQCD. In the low temperature regime, the net-baryon number obeys the Skellam distributions
that are well described by the hadron resonance gas (HRG) model.

In the left panel of Fig. 2 the fourth-order baryon number fluctuation 𝑅𝐵
42 is depicted in the

phase diagram, whose values are denoted by gradient color. The fluctuations are computed in the
QCD-assisted LEFT with fRG. One observes that there is a narrow blue band in the crossover
regime, which corresponds to a valley structure of 𝑅𝐵

42 there. In this phase diagram we also show
the chiral crossover line obtained in a first-principle fRG-QCD computation [10], and the blue band
just sits upon the crossover line. It is obvious that the color standing for value of 𝑅𝐵

42 deepens
with the increase of 𝜇𝐵, that is, the chiral crossover is sharpened. In the phase diagram we also
show the freeze-out curve, obtained from the freeze-out parameters in STAR experiment [17], in
combination with some general considerations, cf. [15] for more details. The freeze-out curve
in this proceeding is one of freeze-out curves investigated in [15], denoted originally as STAR
Fit II, which serves as the best-informed one. In the right panel of Fig. 2 we show skewness of
the baryon number distribution as a function of the collision energy obtained in the fRG-LEFT,
confronted with the experimentally measured skewness of the net-proton distributions 𝑅

𝑝

32 with
centrality 0-5% [13]. The freeze-out curve in the left panel of Fig. 2 has been employed to extract
the collision-energy dependence of 𝑅𝐵

32. One finds that the theoretically calculated results of 𝑅𝐵
32

are in good agreement with the experimental data of 𝑅𝑝

32 with √
𝑠NN & 14.5 GeV. However, there is

a significant discrepancy in the regime of low collision energy, which might indicate that the effect
of global baryon number conservation begins to play a role there.

In Fig. 3 we show the dependence of baryon number fluctuations 𝑅𝐵
42, 𝑅𝐵

62, 𝑅𝐵
82, 𝑅𝐵

31, 𝑅𝐵
51,

4
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Figure 3: Baryon number fluctuations of even orders 𝑅𝐵
42 (top-left), 𝑅𝐵

62 (middle-left), 𝑅𝐵
82 (bottom-left) and

those of odd orders 𝑅𝐵
31 (top-right), 𝑅𝐵

51 (middle-right), 𝑅𝐵
71 (bottom-right) as functions of the collision energy

obtained in the fRG-LEFT. Theoretical results of 𝑅𝐵
42 are compared with the kurtosis of the net-proton number

distributions 𝑅
𝑝

42 measured in heavy-ion collisions with centrality 0-5% [13], and 𝑅𝐵
62 with the sixth-order

cumulant of the net-proton number distributions 𝑅
𝑝

62, which is measured at three values of collision energy,
i.e., √𝑠NN=200 GeV, 54.4 GeV and 27 GeV with centrality 0-10% [14].

𝑅𝐵
71 on the collision energy obtained in the QCD-assisted LEFT within the fRG approach, where

the freeze-out curve in the left panel of Fig. 2 has been employed. In the same time, in the plots
of 𝑅𝐵

42 and 𝑅𝐵
62 the fourth- and sixth-order cumulants of the net-proton distributions measured

in experiments [13, 14], which serve as the proxies for the net-baryon number fluctuations, have
been presented for comparison. It is found that the theoretical results of 𝑅𝐵

42 are consistent with
the measured 𝑅

𝑝

42 within errors, except the data point at the collision energy √
𝑠NN=14.5 GeV. In

particular, a non-monotonic dependence of 𝑅𝐵
42 on the collision energy is observed in the low energy

regime, which is in favor of experimental measurements. Note that the theoretical error indicated
by the green bands is highly correlated, and the error bands are in fact comprised of a family of
lines with a similar behavior to the central line, cf. [15] for more details. The non-monotonic
behavior seemingly also happens in the cases of other fluctuations, e.g., 𝑅𝐵

62, 𝑅𝐵
51 and 𝑅𝐵

82. A
definite conclusion, however, has not yet been arrived at, due to the large errors in the regime of
low collision energy for these fluctuations. The non-monotonic behavior of fluctuations on √

𝑠NN

arises from two facts: One is what we have mentioned above, viz., the chiral crossover becomes
sharper and the oscillating amplitude of baryon number fluctuations is enhanced significantly with
the increasing 𝜇𝐵. The other is that the freeze-out curve, as shown in the left panel of Fig. 2,
deviates away from the crossover line and drops a bit at large 𝜇𝐵. In the plot of 𝑅𝐵

62 and 𝑅
𝑝

62,
one finds that the theory and experiment are compatible with each other within the relatively large
errors. Interestingly, we find negative values for 𝑅𝐵

62 with the three collision energies. Moreover,
our predictions of baryon number fluctuations of odd-orders as well as the eighth-order in Fig. 3,
await experimental confirmation in the near future.
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4. Summary

In this work we have computed high-order baryon number fluctuations at finite temperature
and density in a QCD-assisted LEFT within the fRG approach. Our results for fourth- and sixth-
order baryon number fluctuations meet the lattice benchmarks at 𝜇𝐵 = 0, and are consistent with
experimental measurements, and in particular, the non-monotonic dependence of the kurtosis of
net-baryon number distributions on the collision energy is observed in our calculations. This non-
monotonicity arises from the increasingly sharpened chiral crossover with the decrease of collision
energy. The LEFT results are currently extended to ccomputations in functional QCD, which will
allow us to access the whole STAR, CBM and HADES energy range.
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