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Baryon diffusion near the QCD critical point
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Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued
to follow different trajectories in the QCD phase diagram in which the QCD critical point serves
as a landmark. Using a (1+1)-dimensional model setting with transverse homogeneity, we study
the complexities introduced by the fact that the evolution history of each fireball cannot be
characterized by a single trajectory but rather covers an entire swath of the phase diagram, with
the finally emitted hadron spectra integrating over contributions from many different trajectories.
Studying the phase diagram trajectories of fluid cells at different space-time rapidities, we explore
how baryon diffusion shuffles them around, and how they are affected by critical dynamics near
the QCD critical point. We find a striking insensitivity of baryon diffusion to critical effects. Its
origins are analyzed and possible implications discussed.
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1. Introduction

Confirming the existence and finding the location of the hypothetical critical point (CP) [1] in
the phase diagram of Quantum Chromodynamics (QCD) in principle can be achieved by heavy-
ion collisions which have been carried out at different experimental facilities and at various beam
energies [2]. One of the most promising signatures of the QCD CP, based on static equilibrium
considerations, is a non-monotonic beam energy dependence of higher-order cumulants of the
fluctuations in the net proton production yields [3]. – Experimental measurements hinting at such
a non-monotonicity were reported recently by the STAR Collaboration [4].

Unfortunately, the fireballs created in heavy-ion collisions are highly dynamical whose rapid
expansion keeps the thermodynamic environment and the critical fluctuations out of equilibrium.
Thus, to confirm or exclude the CP via systematic model-data comparison, reliable dynamical
simulations of off-equilibrium critical fluctuations and the associated final particle cumulants, on
top of a well-constrained comprehensive dynamical description of the bulk medium at various beam
energies, are indispensable [5]. For this purpose the Hydro+/++ framework [6, 7] incorporating off-
equilibrium critical fluctuations was developed, but a comprehensive multi-stage and fully validated
framework for heavy-ion collisions at low Beam Energy Scan (BES) energies is still missing [5].

The situation is made even more complicated by the back-reaction of the critical fluctuations on
the bulk evolution of the medium. Critical effects on the bulk viscous pressure were shown to have
non-negligible phenomenological consequences on the rapidity distributions of hadronic particle
yields [8], implying that critical effects might indeed play an important role in the calibration of the
bulk medium. To gain further guidance on how to deal with the critical effects when constraining
the bulk dynamics, we study here critical effects on the bulk evolution through baryon diffusion [9].
We also explore different viscous effects on the phase diagram trajectories along various space-time
rapidities of the fireball.

2. Criticality of baryon diffusion

In the hydrodynamic description of heavy-ion collisions the conservation equations for energy-
momentum and net baryon charge are formulated covariantly as [10, 11]

3`)
`a = 3` (4D`Da − ?Δ`a − ΠΔ`a + c`a) = 0 , 3`#

` = 3` (=D` + =`) = 0 . (1)

Here 3` is the covariant derivative inMilne coordinates, and) `a and #` are the energy-momentum
tensor and (net) baryon current, respectively. 4 and = are the energy density and baryon density in
the local rest frame (LRF), ? the pressure, D` the four-velocity of the fluid element (LRF chosen
as the Landau frame where D`) `a = 4Da , D`#` = =), and Δ`a ≡ 6`a − D`Da . The dissipative
components including the bulk viscous pressure Π, the shear stress tensor c`a , and the baryon
diffusion current =` describe the deviations from local equilibrium.

In this work, to isolate the effects from the baryon diffusion current =`, we shall ignore the
dissipative effects from c`a and Π, focusing only on =`. The equation of motion for =` from the
Denicol-Niemi-Molnar-Rischke (DNMR) theory [10] is an Israel-Stewart type equation:

Dama=
` = − 1

g=
(=` − =`NS) −

X==

g=
=`\ − =aD`�Da − DUΓ`UV=

V , (2)
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where \ ≡ 3 · D is the scalar expansion rate, � ≡ D`3` is the covariant time derivative, and Γ`
UV

are the Christoffel symbols. The =`\-term is the only higher order gradient contribution we keep
in this work, and X== is the associated transport coefficient. The baryon diffusion current =` is
driven by chemical gradients and relaxes to its Navier-Stokes limit =`NS ≡ ^=∇

`U ≡ ^=∇` (`/)) on
the scale of its relaxation time g=, where ^= is the baryon diffusion coefficient, and ∇` ≡ Δ`a3a is
the spatial gradient in the LRF. To exhibit all the critical singularities in the Navier-Stokes limit we
rewrite it in terms of density and temperature gradients,

=
`

NS =
^=

) j
∇`= + ^=

)=

[(
m?

m)

)
=

− 4 + ?
)

]
∇`) ≡ ��∇`= + �)∇`) , (3)

where j ≡ (m=/m`)) is the isothermal susceptibility. The singularity in j can be obtained naturally
from the Equation of State (EoS) if incorporated properly.

Now we turn to the effects of the CP on baryon transport in a relativistic QCD fluid, belonging
to the static universality class of the 3-dimensional Ising model [12] and the dynamical universality
class of Model H in the Hohenberg-Halperin classification [13]. Near the CP, fluctuations at the
scale of the correlation length b significantly modify the physical thermodynamic and transport
coefficients. We shall focus on the critical scaling resulting from equilibrium fluctuations for
thermodynamic quantities and from analytic non-equilibrium fluctuations for transport coefficients.
The second-order thermodynamic quantity j, as well as the first-order transport coefficient ^=, scale
with the correlation length as j ∼ b2, ^= ∼ b [13], where for simplicity the exponents are rounded to
their nearest integers. Therefore, according to Eqs. (3), �� ∼ b−1, �) ∼ b. To identify the critical
behavior for the relaxation time g=, we first note that it characterizes the relaxation time of =` to
the Navier-Stokes limit =`NS. Since =

` can only equilibrate after all fluctuating degrees of freedom
contributing to =` also equilibrate, g= can be considered as the typical equilibration time scale of
the slowest fluctuation mode near the CP. According to Ref. [7], the slowest mode contributing to
=` is the diffusive-shear correlator between the entropy per baryon density fluctuations X(B/=) and
the flow fluctuations XD`: � ∼ 〈X(B/=)XD`〉. Near the CP, the relaxation rate for this mode is
dominated by contributions with typical wave numbers @ ∼ 1/b and scales as Γ� ∼ b−2. Thus it is
natural to expect g= ∼ g� = Γ−1

�
∼ b2. Adopting this critical behavior the Israel-Stewart equation

(2) is found to turn into a Hydro+ equation [9].

3. Results and discussion

In this exploratory study [9] we focus entirely on the longitudinal dynamics of the baryon
diffusion current for Au-Au collisions at √BNN = 19.6GeV, modeled by a (1+1)-dimensional system
without transverse gradients initiated instantaneously at a constant proper time g8 = 1.5 fm/2, with
initial longitudinal profiles taken from Ref. [10]. We assume a “static” initial longitudinal momen-
tum flow profile in Milne coordinates with a vanishing initial baryon diffusion current. For the EoS
at non-zero net baryon density we use neos [14] from which we obtain the non-critical isothermal
susceptibility j0 ≡ (m=/m`)) . The non-critical values of the baryon diffusion coefficient (^=,0) and
the relaxation time (g=,0) are obtained from kinetic theory [10]. In the critical regime we use the
parametrizations

j = j0 (b/b0)2 , ^= = ^=,0 (b/b0) , g= = g=,0 (b/b0)2 (4)
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to incorporate their critical scaling. These hold in the entire crossover domain of the QCD phase
diagram, both far away from and within the critical region. We use an analytical parametrization
of b (`, )) in which bmax/b0 = 10 [9]. The equations are solved numerically using BEShydro [11].

3.1 Longitudinal baryon transport

We first illustrate in Fig. 1a the phase diagram trajectories of fluid cells at several selected |[B |
values, both with (diffusive, solid) and without (ideal, dashed) baryon diffusion. The difference
between the ideal and diffusive trajectories exhibits a remarkable dependence on [B: Both the sign
and the magnitude of the diffusion-induced shift in baryon chemical potential depend strongly on
space-time rapidity. In most cases, we note that the diffusive trajectories move initially rapidly away
from the corresponding ideal ones, but then quickly settle on a roughly parallel ideal trajectory.
The first effect results from strong initial longitudinal baryon transport through baryon diffusion,
whereas the second one indicates a fast decay of the diffusion current. Fig. 1a is reminiscent of the
QCD phase diagram often shown to motivate the study of heavy-ion collisions at different collision
energies in order to explore QCDmatter at different baryon doping [2]. What had been shown there
are (isentropic) expansion trajectories for matter created at midrapidity in heavy-ion collisions with
different beam energies; in contrast, Fig. 1a shows expansion trajectories for different parts of the
fireball in a collision with a fixed beam energy.

Fig. 1a makes the point that in general the matter created in heavy-ion collisions can never be
characterized by a single trajectory but by a swath of them, and fluid cells at different [B pass through
different regions of the QCD phase diagram and therefore are expected to be affected differently by
the QCD CP. We study this further by incorporating the critical scaling (4) which indicates that in
the proximity of the CP (where b/b0 > 1) j and ^= are enhanced and thus move the Navier-Stokes
target value of =` [see Eq. (3)]. Furthermore, its approach towards the target is critically slowed
down since g= increases as b grows. Repeating the simulations with the same setup as above, but
now including critical scaling, results in the dashed lines shown in Fig. 1b. For the parametrization
of the correlation length b (`, )) we assumed a CP located at ()2 = 149MeV, `2 = 250MeV). This

Figure 1: Phase diagram trajectories of fluid cells at different |[B | for the Au+Au collision fireball. (a) Black
dashed lines indicate ideal evolution while colored solid lines include the effects of baryon diffusion (critical
effects not included). The phase transition line and CP are included only to guide the eye. (b) Phase diagram
trajectories with (w-CP, colored dashed lines) and without (wo-CP, colored solid lines, same as the ones
in panel (a)) inclusion of critical effects. The w-CP case accounts for the critical scaling of all parameters
controlling the evolution [Eqs. (4)]. Figures taken from Ref. [9].
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Figure 2: Time evolution of (a) correlation length and (b) longitudinal baryon diffusion =[ (solid lines) and
its corresponding Navier-Stokes limit =[NS (dashed lines) at selected space-time rapidities [9].

is very close to the right-most trajectory which should therefore be most strongly affected by it.
Surprisingly, none of the trajectories, not even the one passing the CP in close proximity, are visibly
affected by critical scaling of transport coefficients.

To better understand this we plot in Fig. 2 the history of the correlation length and baryon
diffusion current at different [B. In Fig. 2awe see that b does show the expected critical enhancement,
which, however, does not begin in earnest before the fireball has cooled down to a low temperature
just above )2 . Fig. 2b shows that at this late time the baryon diffusion current has already decayed to
a tiny value. This two-stage feature, with a first stage characterized by large baryon diffusion effects
without critical modifications and a second stage characterized by large critical fluctuations with
negligible baryon diffusion effects on the bulk evolution, is an important observation. Besides, the
relaxation time for baryon diffusion increases at late times [9], generically as a result of cooling but
possibly further enhanced by critical slowing down if the system passes close to the CP, whichmakes
it difficult for the baryon diffusion current to grow again. These facts explain why no sensitivity
to the CP was seen in Fig. 1b. On the other hand, the fast decay of =[ can be understood through
that of its Navier-Stokes limit =[NS (dashed lines in Fig. 2b) since the former has basically relaxed
to the latter at g & 3.5 fm/2. The decay of =[NS has two reasons: (i) The gradients of `/) decrease
with time, owing to both the overall expansion of the system and the diffusive transport of baryon
charge from dense to dilute regions of net baryon density, and (ii) the baryon diffusion coefficient
^=,0 decreases dramatically, as a result of the fireball’s decreasing temperature [9].

3.2 Viscous effects on phase diagram trajectories

We have seen in Fig. 1a that, compared to the ideal case, baryon diffusion reshuffles the phase
diagram trajectories at different |[B | (i.e. it introduces crossings) by longitudinally transporting
baryon number and thus changing their relative sequence in chemical potential when the system
evolves. We emphasize that this feature of baryon diffusion effects originates from the “interactions”
among trajectories of different fluid cells induced by baryon transport, which also underlies the
convergence of =[ to a vanishing value at late times shown in Fig. 2b; in other words, they happen
because the diffusion smooths out the longitudinal gradient in U = `/) . This is different from
the previously studied case of trajectories of a single fluid cell undergoing Bjorken expansion with
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Figure 3: Phase diagram trajectories of fluid cells at different space-time rapidities with different viscous
effects: (a) shear stress tensor c`a and (b) bulk viscous pressure Π.

varying initial conditions (e.g. [15]). In Fig. 3 we show analogous effects on the phase diagram
trajectories caused by (a) the shear stress tensor c`a and (b) the bulk viscous pressure Π, separately
(easily achievable as BEShydro features a modular structure that allows to turn on and off different
dissipative components and study their physical effects individually [16]). We use the same setup
as above, setting c`a = 0 = Π initially. We see that, compared to the ideal case, all the trajectories
with shear or bulk viscosity are generically pushed to the left or, equivalently, upward, caused by
viscous heating. The effect fromΠ is relatively smaller than that of c`a , as the bulk viscosity Z/B is
parametrized to peak at 155MeV [11] and hence only plays a role towards the end of the evolution.
For different parameters and/or initial conditions shear and bulk stresses could possibly also lead to
trajectory crossings, as a result of rapidity-dependent viscous heating effects, but they are unlikely
to be as efficient as baryon diffusion which changes their chemical potentials directly.

4. Conclusions and discussion

In this work we studied a (1+1)-dimensional system without transverse gradients and flow,
with initial conditions modeling central Au-Au collisions at √BNN ∼ 20GeV, to explore diffusive
baryon transport along the longitudinal (beam) direction in heavy-ion collisions. We focused on the
questions how diffusive baryon transport manifests itself along the beam direction in hydrodynamic
simulations and how it is affected by critical scaling of transport coefficients (g= and ^=) and
singularities in thermodynamic properties (j) in the proximity of the QCD CP. Based on the
Hydro+/++ framework we identified the critical slowing down of the baryon diffusion current
(g= ∼ b2). The baryon diffusion flows observed in these simulations are characterized by an
important feature: They show almost no sensitivity to critical effects even for fluid cells passing
close to the CP.

The main reasons for this insensitivity of baryon diffusion to critical dynamics are twofold: (i)
The baryon diffusion flows are strong at early times but decay very quickly, before the system enters
the critical region, because diffusion reduces the initially strong chemical gradients ∇(`/)) that
drive it, and the baryon diffusion coefficient ^= describing the response to these gradients decreases
quickly as the fireball cools by expansion. (ii) By the time the system reaches the phase transition,
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possibly passing close to the CP, the Navier-Stokes value of the baryon diffusion current is already
very small; critical enhancement by the baryon diffusion coefficient ^= therefore does not help to
revive it, and in any case the relaxation rate controlling the approach of =` to its critically affected
Navier-Stokes value is reduced by critical slowing down.

The observed insignificance of critical effects on baryon diffusion might be taken as permission
to calibrate the fireball medium’s bulk evolution at BES energies without worrying about critical
effects on the baryon diffusion current. However, the possibility of critical effects on the shear and
bulk viscous pressure evolution should also be kept in mind. Other aspects of the full dynamics
may change the evolution of the temperature and chemical potential and thus induce sensitivity
to the CP in the baryon sector as well. Only a full simulation including all dissipative effects
simultaneously will allow us to quantitatively evaluate the significance of critical effects on the bulk
medium evolution at BES energies.
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