
P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
3
6

Diagonal reflection symmetries and universal four-zero
texture

Masaki J.S. Yang∗

Department of Physics, Saitama University,
Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan

E-mail: yang@krishna.th.phy.saitama-u.ac.jp

In this talk, we consider a set of new symmetries in the SM: diagonal reflection symmetries
𝑅 𝑚∗

𝑢,𝜈 𝑅 = 𝑚𝑢,𝜈 , 𝑚∗
𝑑,𝑒 = 𝑚𝑑,𝑒 with 𝑅 = diag (−1, 1, 1). By combining the symmetries with

the four-zero texture (𝑚 𝑓 )11 = (𝑚 𝑓 )13 = 0, the masses and mixing matrices of quarks and
leptons are reproduced with precisions of 10−3. Since this scheme has only eight parameters
in the lepton sector, it has four predictions; the Dirac phase 𝛿𝐶𝑃 ≃ 203◦, the Majorana phases
(𝛼2, 𝛼3) ≃ (11.3◦, 7.54◦) up to 180◦, and 𝑚1 ≃ 2.5 or 6.2 meV with the normal hierarchy.

In this scheme, the type-I seesaw mechanism and a given neutrino Yukawa matrix 𝑌𝜈 completely
determine the structure of the right-handed neutrino mass matrix 𝑀𝑅. A 𝑢− 𝜈 unification predicts
its masses to be (𝑀𝑅1 , 𝑀𝑅2 , 𝑀𝑅3) = (𝑂 (105) , 𝑂 (109) , 𝑂 (1014)) GeV with a strong hierarchy
𝑀𝑅 ∼ 𝑌𝑇

𝑢 𝑌𝑢 .

The symmetries are approximately stable under the renormalization of SM. This statement holds
without the four-zero texture as long as couplings in the first row and column of the Yukawa
matrices are sufficiently small. Then, they can possess information on a high energy scale.
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1. Diagonal reflection symmetries

To start, we show a new set of symmetries [1, 2]. The mass matrices of the SM fermions
𝑓 = 𝑢, 𝑑, 𝑒, and neutrinos 𝜈𝐿 are defined by

L ∋
∑
𝑓

− 𝑓𝐿𝑖𝑚
𝐵𝑀
𝑓 𝑖 𝑗 𝑓𝑅 𝑗 − 𝜈̄𝐿𝑖𝑚

𝐵𝑀
𝜈𝑖 𝑗 𝜈

𝑐
𝐿 𝑗 + h.c. . (1)

These matrices 𝑚𝐵𝑀
𝑓 are assumed to satisfy 𝜇 − 𝜏 reflection symmetries separately [3–5]:

𝑇𝑢 (𝑚𝐵𝑀
𝑢,𝜈 )∗𝑇𝑢 = 𝑚𝐵𝑀

𝑢,𝜈 , 𝑇𝑑 (𝑚𝐵𝑀
𝑑,𝑒 )∗𝑇𝑑 = 𝑚𝐵𝑀

𝑑,𝑒 , (2)

where

𝑇𝑢 =
©­­«
1 0 0
0 0 1
0 1 0

ª®®¬ , 𝑇𝑑 =
©­­«
1 0 0
0 0 −1
0 −1 0

ª®®¬ . (3)

A simultaneous redefinition of all fermion fields 𝑓 ′ = 𝑈𝐵𝑀 𝑓 and 𝜈′ = 𝑈𝐵𝑀 𝜈 by the following
bi-maximal transformation 𝑈𝐵𝑀 ,

𝑚 𝑓 ≡ 𝑈𝐵𝑀𝑚𝐵𝑀
𝑓 𝑈†

𝐵𝑀 , 𝑚𝜈 ≡ 𝑈𝐵𝑀𝑚𝐵𝑀
𝜈 𝑈𝑇

𝐵𝑀 , 𝑈𝐵𝑀 ≡
©­­«
1 0 0
0 𝑖√

2
𝑖√
2

0 − 1√
2

1√
2

ª®®¬ , (4)

leads to the following mass matrices;

𝑚𝑢,𝜈 =
©­­«
𝑎𝑢,𝜈 𝑖𝑏𝑢,𝜈 𝑖𝑐𝑢,𝜈
𝑖𝑑𝑢,𝜈 𝑒𝑢,𝜈 𝑓𝑢,𝜈
𝑖𝑔𝑢,𝜈 ℎ𝑢,𝜈 𝑘𝑢,𝜈

ª®®¬ , 𝑚𝑑,𝑒 =
©­­«
𝑎𝑑,𝑒 𝑏𝑑,𝑒 𝑐𝑑,𝑒
𝑑𝑑,𝑒 𝑒𝑑,𝑒 𝑓𝑑,𝑒
𝑔𝑑,𝑒 ℎ𝑑,𝑒 𝑘𝑑,𝑒

ª®®¬ , (5)

with real parameters 𝑎 𝑓 ∼ 𝑘 𝑓 .
In this basis, the 𝜇 − 𝜏 reflection symmetries (2) are rewritten as

𝑈𝐵𝑀𝑇𝑢,𝑑𝑈
𝑇
𝐵𝑀𝑚∗

𝑢,𝑑𝑈
∗
𝐵𝑀𝑇𝑢,𝑑𝑈

†
𝐵𝑀 = 𝑚𝑢,𝑑 . (6)

Surprisingly,

−𝑈∗
𝐵𝑀𝑇𝑢𝑈

†
𝐵𝑀 = diag(−1, 1, 1) ≡ 𝑅, 𝑈∗

𝐵𝑀𝑇𝑑𝑈
†
𝐵𝑀 = diag(1, 1, 1) = 13. (7)

Then, the 𝜇 − 𝜏 reflection symmetries in the basis are transformed into

𝑅𝑚∗
𝑢,𝜈𝑅 = 𝑚𝑢,𝜈 , 𝑚∗

𝑑,𝑒 = 𝑚𝑑,𝑒 . (8)

The mass matrices (5) certainly satisfy these conditions. We call such a symmetry diagonal
reflection because it is a diagonal remnant of 𝜇 − 𝜏 reflection symmetry after deduction of 𝜇 − 𝜏

symmetry [6]. Each of them is just a generalized 𝐶𝑃 symmetry [7–10] and no longer a 𝜇 − 𝜏

reflection.
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By combining these symmetries with Hermitian four-zero texture (10) [11], the CKM matrix
is reproduced with accuracies of 𝑂 (10−3);

𝑉CKM ≃
©­­«

1
√
𝑚𝑢/𝑚𝑐 0

−
√
𝑚𝑢/𝑚𝑐 1 0
0 0 1

ª®®¬
©­­«
−𝑖 0 0
0 𝑐𝑞 𝑠𝑞
0 𝑠𝑞 𝑐𝑞

ª®®¬
©­­«

1 −
√
𝑚𝑑/𝑚𝑠 0√

𝑚𝑑/𝑚𝑠 1 0
0 0 1

ª®®¬ , (9)

where |𝑠𝑞 | ≃ 0.04 comes from mixings of 23 generations in 𝑀𝑢,𝑑 . This scheme predicts |𝑉𝑢𝑏 | ≃√
𝑚𝑢/𝑚𝑐 |𝑉𝑐𝑏 | ≃ 0.0018, and it does not match the current observation |𝑉obs

𝑢𝑏 | ≃ 0.00361. However,
this mismatch can be solved by allowing large 23 elements with small complex phases [12] or by
allowing finite (𝑀𝑢)11 ≠ 0 [2]. The Hermiticity of Yukawa matrices 𝑌𝑢,𝑑,𝑒 is justified by the parity
symmetry in the left-right symmetric models [13–15].

2. Universal four-zero texture

Here, we show the following universal four-zero texture

𝑀𝑢,𝜈 =
©­­«

0 𝑖 𝐶𝑢,𝜈 0
∓𝑖 𝐶𝑢,𝜈 𝐵̃𝑢,𝜈 𝐵𝑢,𝜈

0 𝐵𝑢,𝜈 𝐴𝑢,𝜈

ª®®¬ , 𝑀𝑑,𝑒 =
©­­«

0 𝐶𝑑,𝑒 0
𝐶𝑑,𝑒 𝐵̃𝑑,𝑒 𝐵𝑑,𝑒

0 𝐵𝑑,𝑒 𝐴𝑑,𝑒

ª®®¬ , (10)

is compatible with neutrino mixing parameters. The plus (minus) sign in ∓ corresponds to a
symmetric matrix of neutrinos (a Hermitian matrix of up-type quarks). Since this system has only
eight degrees of freedom, the following observables determine the mass matrices; three charged
lepton masses at mass of 𝑍 boson 𝑚𝑍 [16],

𝑚𝑒 = 486.570 keV , 𝑚𝜇 = 102.718 MeV , 𝑚𝜏 = 1746.17 MeV , (11)

the mixing angles and mass differences of the latest global fit [17]

𝜃𝑃𝐷𝐺
23 = 49.7◦, 𝜃𝑃𝐷𝐺

12 = 33.82◦, 𝜃𝑃𝐷𝐺
13 = 8.61◦, (12)

Δ𝑚2
21 = 73.9 meV2 , Δ𝑚2

31 = 2525 meV2 . (13)

Thus, the remaining four parameters in the neutrino sector, namely the three 𝐶𝑃 phases 𝛿, 𝛼2,3 and
the lightest neutrino mass 𝑚1 are predicted.

The Jarlskog invariant [18] determines the Dirac phase 𝛿𝐶𝑃 as

sin 𝛿𝐶𝑃 = −0.390, 𝛿𝐶𝑃 ≃ 203◦. (14)

This is very close to the best fit for the normal hierarchy (NH) 𝛿𝐶𝑃/◦= 217+40
−28 [17].

The Majorana phases are calculated from similar rephasing invariants [19]

𝐼1 = Im [(𝑈MNS)2
12(𝑈MNS)∗211] =

1
4

sin2 2𝜃𝑃𝐷𝐺
12 cos4 𝜃𝑃𝐷𝐺

13 sin𝛼2, (15)

𝐼2 = Im [(𝑈MNS)2
13(𝑈MNS)∗211] =

1
4

sin2 2𝜃𝑃𝐷𝐺
13 cos2 𝜃𝑃𝐷𝐺

12 sin𝛼′
3, (16)
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where 𝛼′
3 ≡ 𝛼3 − 2𝛿𝐶𝑃 . A reconstructed mixing matrix 𝑈MNS yields the following results;

𝛼0
2 ≃ 11.3◦, 𝛼0

3 ≃ 7.54◦. (17)

Meanwhile, the original 𝜇−𝜏 reflection symmetry restrict the Majorana phases to be 𝛼2,3/2 = 𝑛𝜋/2
(𝑛 = 0, 1) [20]. The nontrivial phase 𝜋/2 comes from negative masses (after a real rotation). We
parameterize these effects as

𝑚2 = 𝑒𝑖𝛽2 |𝑚2 |, 𝑚3 = 𝑒𝑖𝛽3 |𝑚3 |, 𝛽2,3 = 0 or 𝜋. (18)

The whole Majorana phases are found to be

(𝛼2, 𝛼3) = (𝛼0
2 + 𝛽2, 𝛼

0
3 + 𝛽3) = (11.3◦ or 191.3◦, 7.54◦ or 187.54◦). (19)

Finally, The numerical values of the lightest mass 𝑚1 are found to be

𝑚1 = 6.20 meV for (𝛽2, 𝛽3) = (0, 0) or (𝜋, 𝜋), (20)
= 2.54 meV for (𝛽2, 𝛽3) = (0, 𝜋) or (𝜋, 0), (21)

for the NH case. For the inverted mass hierarchy, the solutions do not have real values and thus
contradict the diagonal reflection.

2.1 Right-handed neutrino mass 𝑀𝑅

The right-handed neutrino mass matrix 𝑀𝑅 can be reconstructed from the type-I seesaw
mechanism [21–24] with some GUT relations. For example, a simple 𝑢 − 𝜈 unification as realized
in Pati–Salam GUT [13] determines 𝑌𝜈;

𝑌𝜈 = 𝑌𝑢 ≃ 0.9𝑚𝑡

√
2

𝑣

©­­«
0 0.0002 𝑖 0

−0.0002 𝑖 0.10 0.31
0 0.31 1

ª®®¬ . (22)

Here, the value of 𝑌𝑢 is taken from one of the recent best fits [12].
From the type-I seesaw mechanism and Eq. (22), 𝑀𝑅 also displays a four-zero texture because

the four-zero texture is seesaw invariant [25, 26],

𝑀𝑅 =
𝑣2

2
𝑌𝜈𝑀

−1
𝜈 𝑌𝑇

𝜈 =
©­­«

0 −1.08 𝑖 × 108 0
−1.08 𝑖 × 108 1.26 × 1014 4.07 × 1014

0 4.07 × 1014 1.32 × 1015

ª®®¬GeV. (23)

Evidently, 𝑀𝑅 also satisfies diagonal reflection symmetry (8),

𝑅𝑀∗
𝑅𝑅 = 𝑀𝑅 . (24)

Therefore, all the fermion masses respect the diagonal reflection symmetry with the four-zero
textures.

The masses of 𝑀𝑅 are found to be

(𝑀𝑅1 , 𝑀𝑅2 , 𝑀𝑅3) = (2.86 × 106 , 3.73 × 109 , 1.44 × 1015) GeV. (25)
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This is just an example calculation because it depends on unification schemes. Also, the Yukawa
matrix 𝑌𝜈 (22) is evaluated at 𝑚𝑍 scale. Renormalized values of quark masses at a GUT scale will
lead to 𝑂 (10) smaller masses of 𝑀𝑅.

Moreover, these symmetries are almost renormalization invariant and realized by vevs of scalar
fields ⟨𝜃𝑢⟩ = 𝑖𝑣𝑢 and ⟨𝜃𝑑⟩ = 𝑣𝑑 that only couple to the first generations of SM fermions. Detailed
discussions are found in the original papers [1, 2].
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