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1. Introduction

Despite the up to now successful interpretation of the experimental data collected at the Large
Hadron Collider (LHC) and the breakthrough discovery of the Higgs boson at LHC, the Standard
Model of Particle Physics (SM) is still unable to provide a convincing explanation for a variety of
issues of cosmological and astrophysical nature. The latter indicate the need of extending the SM,
which shall be seen as an effective theory valid at low energies. In order to obtain glimpses of
what lies beyond the SM, we need to exhaust its limits and look for inconsistencies with the high-
precision experimental data of High-Luminosity LHC and future collider experiments. Thus the
production of theoretical predictions of equally high precision for several SM scattering processes,
with emphasis to the ones where Quantum Chromodynamics (QCD) is involved, has become a
necessity.

Such theoretical calculations are carried out within the framework of perturbative Quantum
Field Theory, where the scattering cross section can be calculated as a series expansion on the
coupling constants of the theory at hand. The first term of this expansion corresponds to the leading
order prediction (LO) and is followed by the next-to-leading order prediction (NLO), which is
followed by the next-to-next-to-leading order prediction (NNLO) and so on. Moreover, due to the
need of taming the infrared and ultraviolet divergences that become apparent in this expansion,
renormalization schemes together with theDimensional regularization (DR) (where the space-time
dimensions are shifted to d = 4 − 2ε) are used. The current frontier on these computations stands
at NNLO for 5-particle processes and at N3LO for 4-particle ones.

For the computation of a cross section in a desired order of the perturbative expansion one
needs first to compute the scattering amplitudes contributing to it. At different orders there exist
amplitude contributions of different nature (virtual, real and mixed virtual-real contributions), but
the most difficult to be computed appears to be, at any order, the virtual ones. The latter demand the
computation of Feynman integrals (FI), where going beyond one loop computations is a non-trivial
task. In more detail, a scattering amplitude for a specific process is constructed by collecting
all the contributing Feynman graphs, which are generated using theory-dependent Feynman rules.
Next the amplitude is reduced to a specific set of FI1, the so-called Master integrals (MI), using
techniques based at the integrand or/and integral level. Finally, the computation of the amplitude is
completed with the computation of the aforementioned integrals.

There is a large advancement on the numerical calculation of FI, with the publication of
automated packages, like FIESTA5 [1] and pySecDec [2], which are implementing the method of
Sector Decomposition [3]. Although these packages are able to provide results of high precision for
several FI in the Euclidean region2, this is not the case for physical regions of phase-space which
are relevant for phenomenological applications. Thus the importance of analytic computation of
FI, which can provide high precision results even for the physical regions, becomes apparent. The
FI are usually computed analytically in the Euclidean region and afterwards they are extended in
the physical regions using proper analytic continuation techniques. The modern method for the
analytic computation of FI is the method ofDifferential Equations (DE) [4–7], while a lot of results
have been derived via direct integration of FI in the Feynman-Parameter representation [8] as well.

1For LO there is no need for reduction, as there is not integral over loop momenta.
2A region of the kinematical invariants where the FI are free of branch cuts.
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In this proceeding, we focus on the progress made within our group on two steps of the
above described procedure of precision computations. In the first section, after quickly reviewing
HELAC-1LOOP which is an automated package for computing 1-loop scattering amplitudes, we
mention the upgrades made, and the ones needed to be made, in order to enable the HELAC
framework to construct and compute generic two-loop QCD scattering amplitudes. In the second
section, we briefly describe theDEmethod andwe quote some recent results on two-loop 5-point and
three-loop 4-point massless FI with one external massive particle, using the Simplified Differential
Equation approach (SDE) [9]. In the last section we conclude, mentioning future work on the same
direction.

2. Scattering Amplitudes

Any l-loop n-point QCD scattering amplitudeMl−loop can be decomposed into a color factor
and a kinematic-dependent part, written schematically as

Ml−loop =
∑

ClAl−loop (1)

where Cl is the color factor of the corresponding amplitude, and Al−loop is the color-stripped
amplitude, which can be constructed using color-stripped Feynman rules. For the computation
of Cl there exist different color representations, with the most famous one being the fundamental
representation, where the Cl is expressed in terms of traces of the SU(3) generators taij . Within the
HELAC framework the Color-Connection (Color-Flow) representation [10, 11] is used, where the
amplitude is contracted with a taij matrix over the adjoint index a for every gluon. This results to Cl

being equal to a product of delta functions with fundamental and anti-fundamental indices.

2.1 HELAC-1LOOP in a nutshell

Considering now the 1−loop case, the general form of a n−point color-stripped amplitude is

A1−loop =

∫
µ(4−d)ddk
(2π)d

A1−loop =
∑

I⊂{1, ..., n}

∫
µ(4−d)ddk
(2π)d

NI (k, p1, ..., pn−1, γ
µ, εµ)∏

i∈I Di
. (2)

In the above expression, A1−loop is the 1−loop amplitude integrand, NI is the numerator depending
on gamma matrices, polarization vectors and loop and external momenta, and Di = (k + pi)2 − m2

i

are the scalar propagators with mi being the mass of the propagating particle. The d−dimensional
loop momentum and can be decomposed as

k = k̄ + k∗ with k̄ : 4 − dimensional and k∗ : ε − dimensional (3)

and the computation of A1−loop at d → 4 is done using the well-known formula

A1−loop =
∑
i

di Boxi +
∑
i

ci Trianglei +
∑
i

bi Bubblei +
∑
i

ai Tadpolei + R1 + R2 + O(ε) (4)

where Box, ...,Tadpole refer to the 1-loop MI with 4, ..., 1 external legs, R1 is the rational term
originating from the reduction process of a 4−dimensional numerator (can be computed via three
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Figure 1: Cutting a propagator results to a n + 2 tree-level amplitude, which can be calculated by HELAC.
The two cut particles have flavors f and f̄ , respectively, and obtain the usual HELAC notation (2n and 2(n+1)).

extra scalar integrals [12]), and R2 is the rational term originating from the explicit dependence of
the numerator on ε (can be reproduced by tree−level special Feynman rules [13]).

Within the automated framework of HELAC-1LOOP [14], the 4−dimensional part of the numera-
tor, N̄(k̄), is computed by the tree-ordermachinary of HELAC [10], which using theDyson-Schwinger
recursion equations, calculates tree-level amplitudes for all flavor, spin and color configurations al-
lowed by the SM couplings. For the external particles (level 1 blobs) a binary representation is
used, and a generation of all topologically inequivalent partitions of n, n − 1, n − 2, ..., 1 blobs3 at-
tached to the loop is done. Each numerator contribution is calculated by cutting the propagator-line
connecting the first and the last blob (see Figure 1) and calculating the resulted n + 2 tree-level
amplitude without using denominators for the internal loop propagators.

As it regards the reduction of the amplitude to MI, within HELAC-1LOOP this is done at the
integrand-level using theOPPmethod [12]. In this method, the 4−dimensional part of the numerator
is decomposed as

N̄(k̄) =
I∑

i0<i1<i2<i3

[
d(i0, i1, i2, i3) + d̃(k̄, i0, i1, i2, i3)

] I∏
i,i0,i1,i2,i3

D̄i

+

I∑
i0<i1<i2

[
c(i0, i1, i2) + c̃(k̄, i0, i1, i2)

] I∏
i,i0,i1,i2

D̄i

+

I∑
i0<i1

[
b(i0, i1) + b̃(k̄, i0, i1)

] I∏
i,i0,i1

D̄i

+

I∑
i0

[
a(i0) + ã(k̄, i0)

] I∏
i,i0

D̄i

(5)

where di = d(i0, i1, i2, i3), ci = c(i0, i1, i2), bi = b(i0, i1), ai = a(i0), and d̃, c̃, b̃, ã multiply terms that
integrate to zero (spurious terms). The coefficients are determined by solving iteratively systems of
equations, by evaluating N̄(k̄) and the right-hand-side of (5) at values of k̄ that are solutions of

D̄i(k̄) = 0, for i = 0, ..., M − 1, and M = 4, ..., 1. (6)

One starts with the determination of {d, d̃} and ends with that of {a, ã} (top-down approach).

3The blobs can contain propagators but they are independent of k̄. The level of the blob is equal to the number of
particles that contains.

4



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
1
0

Progress on Multi-loop Calculations Dhimiter Canko

1) Theta−topologies: k1
k3 k2

A

B

≡ {{k1}, {k2}, {k3}, {A}, {B}}

2) Infinity−topologies: k1
k2
≡ {{k1}, {k2}}

3) Dumbbell−topologies: k1 k2

B A

C

≡ {{k1}, {k2}, {C}, {A}, {B}}

Figure 2: The three graph grand-topologies that contribute to the 2−loop amplitudes. The sublists represent
the incoming particles to the corresponding loop-lines (k1, k2, k3), the internal line (C) and the vertex-points
(A, B).

2.2 HELAC-2LOOP in construction

Focusing now on the 2−loop case, a n−particle color−stripped amplitude has the following
form

A2−loop =

∫
ddk1ddk2

(2π)2dµ2(d−4) A2−loop =
∑
I⊆T

∫
ddk1ddk2

(2π)2dµ2(d−4)
NI (k1, k2, p1, ..., pn−1, γ

µ, εµ)∏
{i1,i2,i3 }∈I Di1(k1)Di2(k2)Di3(k1, k2)

(7)
with T being the set containing all the 2−loop graph topologies of the process at hand. Driven by
the 1−loop case we expect that at two loops, the amplitude at d → 4 can be cast in the following
form

A2−loop =
∑
i

ci(s)Fi(s, ε) + R2−loop
1 (s, ε) + R2−loop

2 (s, ε) + O(ε) (8)

where Fi is a basis of 2−loop MI, s are Mandelstam variables or/and internal masses, and
{R2−loop

1 , R2−loop
2 } are the 2−loop generalization of the 1−loop rational terms. Considering the

MI, a general basis for any process at hand (as in the 1−loop case) is still undeterminded while at
the same time a lot of progress needs to be done on the computation of MI that contribute to such a
basis. For what concerns the rational terms, a lot of progress has been done for the computation of
R2−loop

2 [15–17], but the same doesn’t hold true for the R2−loop
1 term.

At two loops and within the SM, the amplitude receives contributions from three different
graph grand-topologies, which we name Theta, Infinity and Dumbbell topologies, and we depict
them on Figure 2. Within HELAC-2LOOP, we aim on the construction of the 4−dimensional part
of the numerator using the already working approach of HELAC-1LOOP, meaning cutting the graph
topologies in two (appropriately chosen) propagator-lines and computing, using HELAC, the resulting
n + 4 tree-level amplitude without using denominators for the loop propagators.

5
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For this reason we have created a Fortran-based generator (GENTOOLS), which generates
all the 2−loop graph topologies in a five list format4 using the blob-binary representation. The
algorithm of GENTOOLS goes as follows. In the beginning, generates all the possible combinations of
the higher level blobs into the lists (lower-topologies). Then creates the higher topologies by taking
all the possible splittings of the blobs. This step is performed till we arrive to graph topologies
containing only level 1 blobs5. We note that the described procedure of generating loop topologies
leads to possible double countings, which are removed making use of symmetries inherent in each
of the three graph grand-topologies (see [18] for more details).

Having a specific process at hand, the aforementioned graph topologies are dressed with flavor
using SM Feynman rules, cut in a k1 and a k2 loop-line, and then dressed with color. After color and
flavor dressing, the tree-level HELAC machinery is employed which for every color configuration
constructs a numerator contributing to the skeleton of the amplitude. After color and flavor
dressing, the tree-level HELAC machinery is employed to compute recursively the numerator for
each contributing configuration, using Dyson-Schwinger equations.

Concerning the amplitude reduction at two loops, our intention is to combine new methods
on this direction [19–32] together with an extension of the OPP method at two loops. Within a
two-loop OPP−like method, the coefficients of the master integrals in (8) could be determined at
the integrand level by the 4−dimensional part of the amplitude via following a top-down approach,
starting by the determination of the top-sector coefficients and going down till the lowest sectors
coefficients. This means that an expression of the following form would hold true

A2−loop =
N̄I (k̄1, k̄2, p1, ..., pn−1, γ

µ, εµ)∏
{i1,i2,i3 }∈I D̄i1(k̄1)D̄i2(k̄2)D̄i3(k̄1, k̄2)

=
∑
i

ci(s)Ii +
∑
j

c̃j(s)Sj (9)

where Ii are the master integrands that will integrate to the master integrals Fi and Sj are the
spurious terms that will integrate to zero. For the application of such an approach, a complete basis
of master integrands and spurious terms is needed, which for the moment is still missing.

3. Feynman Integrals

As we have already mentioned, the modern approach for computing FI is using the DE method
[4–7]. Within this method, for specific kinematic processes we define families of integrals which
are of the following form

Fα1,...,αN =

∫ (
L∏
i=1

ddki
iπd/2

)
1

Dα1
1 ...DαN

N

(10)

with αi arbitrary integers, L the number of loop momenta (ki), E + 1 the number of external
momenta (pi) and N = L(L + 1)/2 + LE the number of linear scalar independent propagators,
Da = (ki + pj)

2 − m2
a, of the family. For L > 1, there exists a set of propagators coming from

irreducible scalar products6 for which the indices αj are negative, meaning that these propagators
can appear only in the numerator.

4For the Infinity topologies a two list format is used.
5These hold true for all but the blobs that are attached to the vertices A and B, which can not be splitted.
6These are products of loop momenta with external momenta that can not be written in terms of the propagators of

the top-sector Feynman graph
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The fact that the total derivatives vanish within DR gives rise to the Integration by Parts
Relations (IBP) [27]∫ L∏

i=1

ddki
iπd/2

∂

∂ki

(
lj

Dα1
1 ...DαN

N

)
= 0 with lj = k j or pj . (11)

which imply the existence of a finite basis of integrals [33], the Master integrals (MI). There is a
freedom in the choice of this basis, and any FI of the family can be expressed as a linear combination
of MI with some algebraic coefficients of si j = (pi + pj)

2, m2
a and ε. For the IBP reduction to MI

there exist modern automated packages implementing Laporta’s algorithm [28], such as FIRE6 [34]
and KIRA2 [35].

Using the IBP relations and the fact that FI are functions of external momenta and internal
masses, we can differentiate them with respect to the kinematic invariants, Sk = {si j,m2

a}, and
derive differential equations for the MI

∂

∂Sk
Gi(ε, {Sk}) =

I∑
j=1

Bk
i j(ε, {Sk})G j(ε, {Sk}) ⇒ ∂k ®G = Bk ®G (12)

where I is the number of MI. One can solve this DE in a Laurent expansion around ε = 0 after first
finding appropriate boundary conditions for the MI. From (12) we can see that by making a change
of the basis ®G→ U ®G, Bk changes as Bk → UBkU−1 +U∂kU−1.

One groundbreaking idea that has lead to numerous calculations of FI is that of the Canonical
DE [36]. According to this idea, for a suitable choice of the basis of MI (which corresponds to a
suitable choice of U) the DE can take the following form

∂

∂Sk
®G′(ε, {Sk}) = ε

∑
i

Mki

Sk − li
®G′(ε, {Sk}) (13)

which is ε-factorized, Fuchsian and with Mki being purely numerical. Thus it can be solved
iteratively in ε. In order to obtain DE of canonical form, the basis of MI should be chosen such that
it contains only functions with uniform degree of transcendentality (UT). The transcedentality of a
function f , T( f ), is defined by the number of iterated integrations needed to define the function f .
Some Examples and properties of the transcedentality within DR, are [36]

• T(log(x)) = 1, T(Lin) = n, T(π) = 1, T(ζ(n)) = n and T(Algebraic Factors) = 0.

• T( f1 f2) = T( f1) + T( f2) and T(ε) = −1.

Although there doesn’t exist a general method for obtaining aUT basis (or even proving its existence)
for any given family of FI, there exist different methods [37–46] the combination of which can lead
to a canonical DE.

3.1 The Simplified Differential Equations Approach

The SDE approach [9] is a variant of the standard DE method, where the external momenta
are re-parametrized in terms of a dimensionless parameter, x, with respect to which the MI are
differentiated in order to create a DE of the form

∂

∂x
G =M

(
{Si j,m2

a}, x, ε
)
G (14)

7
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where Si j are the kinematic invariants defined by the external momenta in the SDE parametrization.
As we will see in the next subsection, the SDE parametrization is not unique, but in general respects
the rule that x is introduced in a way that captures the off-shellness of one external momentum. The
rationalization of the square roots, with respect to x, that appear in the UT basis is also a fact that
someone has to take into account in order to choose a viable parametrization.

In order to solve (14) one has to compute the boundary conditions of the basis elements at
x → 0, denoted as gbound. For this computation we follow the subsequent algorithmic approach
[47, 48]

• First, we use as boundaries the already known integrals from other families or the ones known
in closed form.

• Then, by comparing the asymptotic regions obtained for the MIs from expansion-by-regions
method [49] (as implemented in the asy code) with the ones obtained by the DE, using the
resummation matrix [50, 51] at x = 0

M0 = S0D0S−1
0 −→ R0 = S0eεD0 log(x)S−1

0 −→ TFx→0 = R0gbound , (15)

we obtain relations between different boundaries of the family.

• Finally, we are left with some asymptotic regions of MI or basis elements [52] to calculate,
whichwe do so by obtaining Feynman-Parameter representation of the regions and integrating
in the Feynman-parameters.

An extra feature of the SDE approach is that by taking the x → 1 limit of the solution we can
readily obtain the solution for the same family with one external massive momentum (the one the
off-shellness of which we captured with the introduction of x) less. For more details and examples
of taking the x → 1 limit we refer to [48, 53–55].

3.2 Recent Multi-loop Computations using the Simplified Differential Equations Approach

In this Subsection we quote some recent results for multi-loop MI using the SDE approach.

3.2.1 Planar Three-Loop Four-Point Massless Families with One External Massive Particle

We begin with the three-loop problem of the planar massless families for a process with four
external particles, one of which is massive. These are the ladder-box (F1) and the two tennis-
court (F2 and F3) families, which are depicted in Figure 3. The calculation of these families is
important for the computation of N3LO corrections to the cross section of particle processes like
e+e− → γ∗ → 3 j, pp→ Z j and pp→ H j.

From the integral family point of view, each of these three families contains 15 propagators of
which 5 are numerators produced by ISPs. F1 consists of 83 MI, while F2 and F3 consist of 117
and 166 MI, respectively. Regarding the kinematics, this scattering process has the following three
independent invariants

s = (q1 + q2)
2, t = (q2 + q3)

2 and m2 = q2
2 . (16)

8
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q4q1

q2 q3
q2 q1

q3 q4

q1 q4

q2 q3

Figure 3: Diagrammatic representation of the F1 (top), F2 (bottom left) and F3 (bottom right) top-sector
diagrams. The double line represents the massive particle and all external momenta are taken to be incoming.

In our computation [48, 56] we used the following parametrization7

q1 → xp1, q2 → p12 − xp1, and q3 → p3, (17)

having as independent invariants the set {S12, S23, x}, with S12 = (p1 + p2)
2 and S23 = (p2 + p3)

2.
Concerning the UT basis, for the ladder-box family we adopted the UT basis provided in [57],
where this family was first studied, while for the two tennis-court families we derived it using
different existing methods (see [58] for details). We solved the DE till weight 6 on ε, and in an
Euclidean region of the invariants and, subsequently, we used fibration-basis techniques [59, 60] to
analytically continue and express our results in the three physical regions of interest. Our solutions
are analytic and expressed in terms of real-valued Goncharov polylogarithms (GPLs8) [61], thus
being well-suited for phenomenological applications.

Interesting is the fact that, by studying the relation of the residue matrices of the standard DE
method with the ones of SDE aprroach in [56], we found out that the adjacency conditions [63, 64]
previously studied for the ladder-box family and the corresponding two-loop planar and non-planar
families seem to apply also for the two tennis-court families.

3.2.2 Two-Loop Five-Point Massless Families with One External Massive Particle

We focus now on some families with one loop less but with three more kinematical invariants.
These are the six two-loop massless families with four massless and one massive external particle,
which are sketched in Figure 4 and contain 11 propagators (3 of which are numerators). The planar
topologies (first row) are called penta-box families and we use the notation P1 (74 MI), P2 (75 MI)
and P3 (86 MI) for them, while the non-planar ones (second row) are called hexa-box families and
we denote them N1 (86 MI), N2 (86 MI) and N3 (135 MI). For the completion of the computation of
all the FI families contributing to scattering processes involving 4 massless and 1 massive particle,

7For convenience we use the notation pi... j = pi + · · · + pj .
8GPLs are numerically evaluated very fast when they are real valued using GinaC [62].
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Figure 4: Diagrammatic representation of the planar penta-box and the non-planar hexa-box families with
one external massive leg (double line). From left to right, in the first row we have the P1, P2 and P3 penta-box
families, while in the second row we have the N1, N2 and N3 hexa-box ones.

such as W, Z and Higgs production in association with two jets, one needs to compute also the two,
so-called, double-pentagon families.

Concerning the six independent kinematical invariants of this problem, in the standard approach
these can be chosen to be {q2

1, s12, s23, s34, s45, s15}, with si j =
(
qi + qj

)2 and the external momenta
satisfying q2

1 , 0 and q2
i = 0, for i = 2, . . . , 5. For our computation [47, 52], we adopted the UT

basis from [46, 65], where these families were first studied and numerically solved using the method
of generalized power series expansions [66], and we used the following parametrization

q1 → p123 − xp12, q2 → p4, q3 → −p1234, and q4 → xp1 (18)

where the momenta pi satisfy p2
i = 0, for i = 1, . . . , 5. After the application of the above transfor-

mation the new set of independent invariants is {S12, S23, S34, S45, S51, x}, with Si j =
(
pi + pj

)2.
The reason for choosing the parametrization (18) is the fact that it rationalizes, with respect

to x, some of the square roots that appear in the UT basis of the 6 families, making them in this
way possible to be solved analyticaly in terms of GPLs. More specifically, using (18) we were
able to rationalize the square roots appearing in P1, P2, P3 and N1, obtaining for them thus an
analytic solution till weight 4 on ε in an Euclidean region. For the families N2 and N3, where the
rationalization with respect to x was not possible, we acquired an analytic solution till weight 2
on ε and from thereon we established a one-dimensional integral representation in terms of GPLs
for obtaining numerical results till weight 4. In order to analytically continue our results and
make them suitable for phenomenological studies in the 5 physical regions of interest, we used
the +iε prescription [67] because an analytic continuation using [59] was not possible due to the
appeareance of algebraic letters on the alphabet of the DE.

4. Conclusion

In conclusion, we presented the recent developmentsmade on the development of HELAC-2LOOP
and the computation of multi-loop FI using the SDE approach. Our next steps towards the automa-
tion of NNLO QCD computations using the HELAC framework consist of the completion of all
upgrades needed by the HELAC code in order to be able to numerically compute the 4-dimensional
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part of a 2-loop numerator for any provided process, the creation of a general basis of master
integrands (plus spurious terms) and the computation of the R2−loop

1 rational terms. On the same
direction, progress is necessary to be made on the computation of 2-loop MI and thus we are cur-
rently working on the computation of the two massless double-pentagon families with one external
massive particle. Being aware of the need for N3LO computations for future comparisons with
experimental data, we plan also to extend our work to the computation of the non-planar three-loop
four-point MI with one massive leg.
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