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1. From Geometrising the Cosmos to Micro-Cosmos

Geometry has played an instrumental role in our understanding of the cosmos in modern
physics. We only have to look at General Relativity, which did away with the mysterious action at a
distance for which by Newton famously “o�ered no explanations", and instead explained gravitation
purely as a the result of geometry of the spacetime manifold [1]. Indeed, geometry seems to hold
a certain allure, since, even in antiquity, many numerous proto-scientific or philosophical attempts
were made to explain the machinery of the cosmos. Pythagorean philosophers, inspired by their
idea of the Monad, viewed the universe as a unit in which all heavenly bodies move in perfect circles
around the Eternal Fire, sometimes identified as the Sun itself [2]. While the Pythagorean model
arose from ideas of aesthetics rather than observation, it was an early example of geometry driving
the development of models of the universe.

The principle that the cosmos could be explained through the lens of geometry was central
to the debate between geocentrism and heliocentrism. The geocentric model, originally conceived
by Anaximander in the 6th century BC and later advocated by Plato in the 4th century BC, was
in no small part influenced by the ever-pervasive belief that humanity has a special place in the
universe. However, it had to be “patched up” multiple times when it was found incompatible with
observations, in particular retrograde motion. Secondary trajectories such as deferents and epicycles
were suggested by Apollonius and Hipparcus in the 2nd century, but these were still incompatible
with the non-uniform retrograde motions of the planets. Inspired further by geometry still, Ptolemy
soon finally suggested a point outside of Earth, the equant, around which the motions of the planets
were uniform, finally leading to an agreement with observations [3].

Heliocentrism, as put forward by Aristarchus and Seleucus in the 3rd and 2nd centuries BC,
was considerably more elegant than the Ptolemaic model, but did not gain much traction, since it
did not conform to Aristotelian philosophy. The latter postulated that the Earth (made as it is by
the heaviest element) should sit at the centre of the cosmos, surrounded by layers of water, air, fire,
and finally aether (in the form of other planets) [4]. The Copernican revolution that occurred in
the 16th century AD, sparked a wave of renewed interest in heliocentric models, something that
came to be heavily frowned upon by the Church. Tycho Brahe attempted to reconcile scripture and
the heliocentric model by suggesting that the Earth is orbited by the Mercury, Venus, and the Sun,
which is orbited by the rest of the planets [5]. Eventually, thanks to the observations of Kepler and
Galileo soon after Copernicus proposed his model, heliocentrism superseded geocentrism as the
dominant cosmological model, supported theoretically by Newton’s law of universal attraction.

As the study of geometry progressed, it became clear that there was an unspoken assumption
that permeated the debate between geocentrism and heliocentrism. This was the idea of an absolute
frame of reference, expressed both in geocentrism (implicitly viewing the Earth as the true centre
of the Universe) and heliocentrism (Copernicus’ immobile sphere of stars). The existence of
an absolute frame of reference is compatible with the notion of absolute motion, as well as the
existence of an immobile, permeable medium such as the luminiferous aether. However, even
before the “aether crisis” kickstarted by the Michelson–Morley experiment [6] and the subsequent
development of the theory of relativity, the notion of absolute frames was challenged on theoretical
grounds by thinkers such as Leibniz, Berkeley, and Mach. It was not long before special and general
relativity made it clear that by geometrizing the force of gravity, there is no way to elevate one frame
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of reference above all others.

The idea that no frame is special is now a core tenet of scientific inquiry. Indeed, this notion
can be gleaned by observing that the Tychonic model and the Copernican model are equivalent;
no observation can be made to distinguish them [7]. Essentially, they describe the same physical
setup in di�erent frames. Despite this, a frame problem has persisted in Quantum Field Theory
(QFT) and Quantum Gravity since the 20th century. A single QFT can be described in multiple,
classically equivalent ways, yet there has been considerable debate [8–29] as to whether such
descriptions maintain their equivalence once the theory gets quantized. As discussions about which
the preferred frame should be abound in the literature, we take inspiration from geometry in the same
way that lead to the development of Einstein’s General Relativity, and move towards a covariant
description of frames in QFT that includes fermions.

The structure of these proceedings is as follows: in Section 2 we review the issue of conformal
frames in QFT and in particular the dichotomy between the so called Einstein and Jordan frames
for scalar-tensor theories of gravity. We show explicitly how to write a frame-invariant metric of
spacetime leading to frame invariance of the classical action. Using the frame invariant metric and
field-space covariance techniques, we derive an expression for the e�ective action that is both frame
and reparametrization invariant in Section 3. In Section 4, we review how to include Grassmannian
coordinates in a manifold giving rise to a supermanifold. We then examine some basic properties
and operations applied to supermanifolds such as supertransposition, supertrace, etc. In Section 5,
we present how to employ the language of supermanifolds to define a field-space for theories with
fermionic degrees of freedom. We discuss how to define field-space tensors on the supermanifold
and highlight what properties should be satisfied by the field-space metric. We then describe how
the metric can be obtained and calculate it explicitly for a theory with one scalar field and one Dirac
fermion in Appendix A. In Section 6, we apply the covariant methods of the supermanifolds to the
Vilkovisky-DeWitt (VDW) e�ective action so as to obtain an expression for the e�ective action that
is fully reparametrization invariant. Our findings are then summarised in Section 7.

2. Conformal Frames in Field Theory

Covariant methods have been used in QFT [30–43] and Quantum Gravity through the works
of Vilkovisky and DeWitt [44–49]. In particular, the VDW e�ective action may solve a number
of problems that would require knowledge of the o�-shell dynamics of a quantum system, which
are highly frame dependent in the configuration space. In particular, problems of great interest and
importance are as follows: (i) the gauge-independent definition of e�ective charges in non-Abelian
gauge theories [50–53]; (ii) the gauge-invariant description of unstable particle dynamics within the
context of (-matrix theory [54–56]; (iii) the proper field-reparameterization invariant definition of
electroweak precision observables, including Veltman’s electroweak parameter [57]; (iv) the unique
field-reparameterization invariant expansions of e�ective field theories such as Standard Model
E�ective Field Theory (SMEFT) [58, 59]; and (v) a frame covariant description of cosmological
inflation in models with multiple scalar fields that may act as inflatons [28, 29, 60–64].

However, these methods were limited in their scope in the sense that they did not deal with
the cosmological frame issue, and they did not include fermionic fields. Before we present our
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formalism that incorporates these desirable features, it is important to provide some background
information on the topic.

A frame in QFT (and classical theory) is simply a specific representation of the action of a
theory. The two most prominent frames are the Einstein frame and the Jordan frame. In the Jordan
frame, there exists a non-minimal coupling between the field and the scalar curvature, whereas in
the Einstein frame, this non-minimal coupling is removed through a judicious reparametrization of
the fields, including the metric.

We will consider a scalar-tensor theory [65–71] (that can later be quantized) with a spin-2
graviton field 6`a and a set of scalar fields i� (collectively denoted as >) with an action of the form

(JF [6`a , >] =
π

3⇡G
p�6


� 5 (>)

2
' + :�⌫

2
(>)6`am`i�mai

⌫ �+ (>)
�
. (1)

The above action is in the Jordan frame, whereas the following action is in the Einstein frame:

(EF [6̃`a , >̃] =
π

3⇡G
p
�6̃

"
�
"2

%

2
'̃ + 1

2
:̃�⌫ (>̃)6̃`am` ĩ�ma ĩ

⌫ �+ (>̃)
#
, (2)

where 6 ⌘ det(6`a) and the model functions 5 (>), :�⌫ (>),+ (>) are the e�ective Planck mass,
the scalar field-space metric and the potential respectively. These two actions are linked together
by a conformal transformation (field-dependent scaling of the metric) and a field reparametrization
(a field-depending rescaling of the fields themselves) [64].

The classical equivalence between di�erent frames can be seen from the observation that
(JF [6`a , >] = (EF [6̃`a , >̃], which indicates that the two actions are physically equivalent, in the
sense that calculating their observables yields the same results. The frame problem then essentially
amounts to the following question: “Upon quantization, do the Jordan- and the Einstein-frame
actions yield the same observables?” In order to probe this question at the most fundamental level,
it is wise to turn to the e�ective action formalism, which can be used to derive an action �[6`a , >]
that incorporates all quantum corrections to the classical action.

Which action we use to determine the e�ective action may return di�erent results. Indeed, it
was found that �JF [6`a , >] < �EF [6`a , >] except at extremal points. This is not an issue at first
glance, since observable quantities are calculated at the extrema of the action. However, both for
the sake of having a covariant approach in which a particular frame is not privileged above all
others, and in order to ensure that o�-shell formulations of QFT do not su�er from frame issues, it
is certainly desirable to find a formulation which resolves this issue.

We turn our attention to the Jordan frame scalar-tensor action (1). This class of actions is
described by three model functions: the non-minimal coupling 5 (>), the non-canonical kinetic
term :�⌫ (>), and the potential + (>). From a physical point of view, we can examine two possible
transformations that essentially amount to a relabelling of variables, and should therefore not have
any physical e�ect on the action itself:

1. Spacetime di�eomorphisms which consist of changing the coordinates on spacetime:

G` ! G̃` = G̃` (Ga) , (3)

with invariant line elements

3B2 = 6`a3G
`3Ga = e6`a3G̃`3G̃a . (4)
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2. Field reparametrizations like conformal transformations and scalar field reparametrization:

6`a ! e6`a = e6`a (6^_, >) = ⌦2(>)6`a ,
q�! ei� = ei� �

6`a , >
�
= ei�(>).

(5)

The action is indeed invariant under a field reparametrization if care is taken to appropriately
transform all model functions, whose transformation rules are given by [64]:

5 (>) ! 5̃ (>) = ⌦�2 5 (i),
+ (>) ! e+ (>) = ⌦�4+ (i),

:�⌫ (>) ! :̃ e�e⌫ (>) =
⇥
:�⌫ � 6 5 (ln⌦),�(ln⌦),⌫ + 3 5,�(ln⌦),⌫ + 3(ln⌦),� 5,⌫

⇤
m�ie�m⌫ie⌫.

(6)
However, the line element 3B2 is not invariant under a conformal transformation, since it transforms
as

3B2 ! 3B̃2 = ⌦23B2. (7)

In a gravitational theory where 6`a is considered a dynamical field rather than the spacetime metric,
this violates the invariance of the action. To rectify this, we introduce a new model function ✓(>)
which transforms as [72]

✓̃(>) = ⌦ ✓(>), (8)

and use it to define a frame-invariant metric through

6̄`a ⌘ 6`a/✓2(>). (9)

This metric can be used to calculate a spacetime line element that is both frame- and di�eomorphism-
invariant:

3B̄2 = 6̄`a3G
`3Ga . (10)

The strength of our approach incorporating this new function, compared to similar approaches in
the literature [15, 73–75], is that when scaling the metric in (9), no particular functional form of
✓(>) is specified a priori. This implies that there is no “preferred frame", which in turn is vital in
constructing an e�ective action that is unique and reparametrization invariant. In this approach,
✓ appears in the functional measure of the path integral and thus acquires the physical role of an
e�ective Planck length, leading to complete frame invariance of the classical action S:

(
h
6̃`a , ei; ✓̃(i), 5̃ (i), :̃ (i), e+ (i)

i
= (

⇥
6`a , i; ✓(i), 5 (i), : (i),+ (i)

⇤
. (11)

Moreover, at tree level we have

( =
π

3⇡G
p�6L =

π
3⇡G

p
�6̄ L (12)

which is independent of ✓(>). In (12) we have defined the rescaled Lagrangian

L = ✓⇡L, (13)

which is invariant under frame transformations (5) and spacetime di�eomorphism (3).
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3. Covariant Methods in QFT: Bosonic Fields and Gravity

So far, we have focused on the topic of conformal frames in QFT. It is now time to examine more
deeply how a QFT that includes gravity as a dynamical field can be geometrised. The Vilkovisky–
DeWitt approach, using the tools of di�erential geometry, casts the configuration space of QFT in
terms of a manifold equipped with a metric and all that this implies: intrinsic curvature, parallel
transport, geodesic deviation, and so on. Unlike General Relativity, this metric is determined by
the model parameters of the theory; it is not dynamically determined like the spacetime metric is
through Einstein’s equations [1].

We examine the action (1) with the understanding that 6`a is a dynamical field. We therefore
define an augmented field-space manifold that incorporates both the scalar fields q� and the
gravitational tensor field 6`a [23, 76]. General coordinates in this manifold are denoted by

�� =

 
6`a

q�

!
, (14)

where � = {`a, �}. Reparametrizations of the fields are then just di�eomorphisms

�� = e�� (�) (15)

of what we call the grand field space.
We must now define the metric in a unique way using the Lagrangian L:

⌧�⌫ ⌘
6`a
⇡

m2L
m

�
m`q�

�
m

�
maq⌫

� , (16)

where L must also include the usual gauge-fixing terms. Using (16) on the action (1) in the
absence of matter fields along with the gauge-fixing terms yields the following expression for the
gravitational field space metric

⌧ (`a) (df) =
1
2

�
6`d6fa + 6`f6da � U6`a6df

�
, (17)

where U = U(j`, W) is a constant that depends on the gauge fixing condition j` and the constant W.
The notation (`a) implies that no order is specified for the spacetime indices ` and a. To fix the
constant U, the chosen gauge fixing condition is

⌧ (`a) (df) = 6U`6Va6^d6_f⌧ (UV) (^_) , (18)

which in turn implies that U = 0, 1 in four dimensions. Choosing U = 1 yields Vilkovisky’s metric
for gravity %`adf = ⌧ (`a) (df) {U = 1} [46].

We now promote the field space to a configuration space. This takes into account the spacetime
dependence of the fields, which means that the general set of coordinates is now given by

�8 ⌘ �� (G� ) =
 

6`a (G)
q� (G�)

!
, (19)
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with 8 = {�, G� } and G� = {G, G�}. In what follows we will employ Eistein-DeWitt notation
q0 ⌘ q�(G�), and where repeated configuration space indices imply summation over discrete field
space indices and integration over spacetime.

The standard definition of the e�ective action �[>] can be implicitly written as follows:

exp
✓
8

\
�[>]

◆
=

π
[D5] exp

⇢
8

\

h
([5] + X�[>]

Xi0
(i0 � q0)

i�
, (20)

where i0 denotes now the classical field. The impetus for the development of the Vilkovisky–
DeWitt formalism was the observation that this expression for the e�ective action does not act as
a scalar under field reparametrizations because of the explicit presence of the fields i0, which are
not covariant (just like G` is not a covariant quantity in GR).

Incorporating our model parameter ✓(>), we modify the functional derivative such that it takes
into account conformal transformations through the definition of the frame-invariant (in addition to
di�eomorphism-invariant as usual) delta function:

X̄ (⇡) (G) ⌘ ✓⇡X (⇡) (G). (21)

This definition can be used to write down a fully invariant definition of the functional determinant
det as well; this is instrumental in ensuring that the functional measure is invariant as well.

Using these frame-invariant ingredients, we may define the grand configuration-space metric
for the general theory (1) to be

G8 9 = ✓2

 
5 %`adf � 3

4 5,⌫6`a
� 3

4 5,�6df :�⌫

!
X̄ (⇡) (G� � G� ) (22)

where X̄ (⇡) (G� � G� ) ⌘ X (⇡) (G� � G� ) /
p�6̄ is frame invariant. We can also ensure that the path

integral volume element +� [D�]
q

det
�
G8 9

�
is invariant, as desired. To this end, one includes

the gauge fixing j` (�) in a reparametrization invariant manner, as well as the Faddeev-Poppov
determinant [77]

+FP = det
✓
X̄j` (x)
X̄ba (y)

◆
(23)

in the path integral measure, with b` being the gauge parameters,
The di�eomorphism and frame invariant e�ective action then reads

exp
✓
8

\
�[>]

◆
=

π
[D�]M[�] exp

⇢
8

\


([�] + X̄�[>]

X̄i8
⌃8 [>,�]

��
, (24)

where > = (6`a , q) and the modified functional derivative has been defined using the frame-
invariant delta function (21). The path integral measure is in (24) is given by

M[�] = +FP

q
det

�
G8 9

�
. (25)

Equation (24) is the standard VDW expression for the covariant e�ective action where now the
integral measure and functional derivatives have been written in a frame invariant way using (21)
and (23).
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Note that the configuration space vector ⌃0 [>,�] that has replaced the non-covariant term
(i0 � q0) is related to the geodesic tangent vector f0 [>,�] by [47]

⌃0 [>,�] =
⇣
⇠�1 [>]

⌘0
1 f1 [>,�] (26)

where the coe�cient⇠0
1 [>] = hr1f0 [>,�]i⌃ ensures that tadpoles evaluate to zero. The e�ective

action defined in this way satisfies the important property [72]

� [>; ✓(q), 5 (q), :�⌫ (q),+ (q)] = �
⇥
ĩ(i); ✓̃(q), 5̃ (q), :̃�⌫ (q), +̃ (q)

⇤
, (27)

where the transformations of the field and model functions are given by (6), (8) and (15). Thus,
by construction, � is manifestly frame invariant. In particular, the functional form of � does not
change under transformations of the fields and model functions.

We can expand the e�ective action perturbatively as �[>] =
Õ

;=0 \;� (;) [>] and compute
it explicitly order by order using the background field method [78, 79]. Expanding the action
covariantly as

( [� + >] = ([>] +
’
#=1

1
#!

(01...0# [>]�01 . . .�0# , (28)

where

(01...0# [>] ⌘ r01 . . .r0# ([�]
��
� = > , (29)

we can find the one- and two-loop covariant e�ective action to be

� (1) [i] = 8

2
ln det (r0r1() , (30)

� (2) [i] = � 1
8
�01�23r(0r1r2r3)( + 1

12
�01�23�4 5 �

r(0r2r4)(
� �
r(1r3r 5 )(

�
, (31)

where the parentheses imply symmetrisation over the indices enclosed, �01 ⌘ r0r1( and its
inverse, defined by virtue of �01�12 = X02 with �01 = �10, is the propagator. Note that the
expressions for the one- and two-loop e�ective action in (30) and (31) are consistent with [80].

This concludes our treatment of bosonic fields. However, defining a field-space for fermions
and equipping it with a unique metric has been an outstanding problem. This is going to be the
focus of the following sections.

4. A Short Overview of Supermanifolds

To extend the covariant formulation of QFT to theories with fermionic degrees of freedom
we will employ the mathematical language of Supermanifolds. Supermanifolds are the natural
extension of a Riemannian manifold when Grassman valued coordinates are included [81–86] and
their construction follows closely the standard prescription of di�erential geometry. While the topic
is vast and mathematically intricate [87, 88], in this section we limit ourselves to review only those
basic properties that play a direct role in the construction of a fermionic field space.
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Let us start setting the notation by considering a supermanifold with = commuting coordinates
and < anti-commuting coordinates. General coordinates in the supermanifold chart are denoted
with the use of Greek letters superscripts as GU, U = (1, 2, · · · , = + <). When performing a
di�eomorphism in the presence of anti-commuting coordinates

GU ! G̃U = G̃U (x), (32)

one needs to distinguish between left and right di�erentiation. The two operations are related by

�!
m

mGU
G̃V = (�1)U(V+1) G̃V

 �
m

mGU
. (33)

where we have introduced a notation convention that will be employed for the rest of the paper.
Each symbol in an exponent of (�1) is not meant to be taken literally but as a label taking the value
of 1 for anticommuting quantities and 0 for commuting quantities. Hence, (33) tells us that right and
left derivative di�er only when di�erentiating a commuting object with respect to a anticommuting
coordinate. In line with this new convention, indices can be contracted in a straightforward way
only when adjacent and factors of (�1) have to be introduced otherwise and every time the position
of two indices is switched, e.g. GU VG = (�1)UVVG GU. The expressions in (33) are defined to be
the left and right Jacobians:

U�
V =

�!
m

mGU
G̃V ⌘ �!Um G̃V , V�sT

U = V G̃

 �
m

mGU
⌘ V G̃

 �
mU. (34)

Accordingly, we introduce four types of tensors which transform with either left, right Jacobian or
their inverse:

U -̃ = U�sT
V

V- , -̃U = -V
V�

U,

U -̃ = U (��1)V V- , -̃U = -V
V (��1)sTU .

(35)

The superscript sT stands for supertransposition. This operation is defined di�erently for each
possible index placement:

U"
V sT = (�1)U(V+1) V"U,

U" sT
V = (�1)V (U+1)

V"
U,

U"
sT
V = (�1)U+V+UV V"U,

U"V sT = (�1)UV V"U,
(36)

leading to four di�erent types of supermatrices. For a supermatrix with both indices in the upper
position, U"V , or with both indices in the lower position, U"V , we introduce the notion of syper-
symmetricity if "sT = " and anti-sypersymmetricity if "sT = �" .

For supermatrices with one index in the upper position and one in the lower position, i.e. U"V

or U"V , we can also introduce the operation of supertrace:

str (U"V) = (�1)U U"
U = "U

U, str (U"V) = (�1)U U"U = (�1)U "U
U. (37)

The operation of supertrace produces superscalars, i.e. quantities invariant under the transfor-
mations listed in (35) and (36). Notice that str (U"V) = str (U"V) due to the cyclicity of the
supertrace.

9
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The last operation to introduce is that of superdeterminant [82] which is defined for each type
of supermatrix in (36). A general supermatrix has the form

U"V =

 
��⌫ �⇠�

�⇡⌫ �⌫�

!
, (38)

where ��⌫ and �⌫� are =⇥= and <⇥< matrices of commuting numbers, respectively and �⇠� and

�⇡⌫ are = ⇥< and < ⇥ = matrices of anticommuting numbers, respectively. The superdeterminant
of (38) is given by

sdet " =
det

�
� � ⇠⌫�1⇡

�
det ⌫

=
det �

det(⌫ � ⇠��1⇡) . (39)

Taking the superdeterminant of a supermatrix allows one to write an integral measure that is
invariant under di�eomorphisms (32) of the supermanifold [82]:

p
|sdet(") |3=+<G. (40)

Lastly, a supermanifold is Riemannian if endowed with a real rank-2 tensor field U⌧V known as the
metric. The supermanifold metric has to be supersymmetric and non-singular [87]. The inverse
metric U⌧V , defined from the identity U⌧W ⌧WV = UXV , satisfies

U⌧V = ⌧UV = (�1)UV ⌧VU. (41)

Making use of the metric, we can write the general line element of the supermanifold as

D⌃2 = 3GU U⌧V (G) 3GV . (42)

5. Living on a Supermanifold: Field Space for Scalar-Fermionic Theories

The scalar-fermion field space is built with # real scalar fields and " Dirac fermions yielding
8" anticommuting coordinates in 4-dimensional spacetime. General coordinates in the field-space
supermanifold are

� ⌘ {�U} =
⇣
q� , k1

0 , k̄
1
§0 , k

2
0 , k̄

2
§0 , . . .

⌘
, (43)

where 0 and §0 are spinor indices. In what follows, capital Latin letters from the beginning of the
alphabet denote bosonic degrees of freedom and capital letters from the end of the alphabet will
denote fermionic ones. The general frame covariant Lagrangian of a scalar theory with fermions
can be written as [89]

L =
1
2
6`am`�U

U:V (�) ma�V + 8

2
Z `U (�) m`�U �* (�). (44)

The model functions U:V (�), Z `U (�), * (�) are respectively a rank-2 field-space tensor (with

U: � = � :U = 0), a mixed spacetime and field-space vector, a scalar describing the potential and
Yukawa sector. Note that in the absence of fermions U:V would be the bosonic field-space metric
[72]. The function Z `U appears exclusively in fermionic theories since the Lagrangian for a scalar
theory cannot contain a single derivative term.
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Given a Lagrangian, the model functions can be extracted according to the following prescrip-
tion

U:V =
6`a
4

Æm
m

�
m`�U

�L
 �
m

m
�
ma�V

� ,

Z `U =
2
8

✓
L � 1

2
6`am`�U

U:Vma�
V

◆  �
m

m
�
m`�U

� .
(45)

In the field-space supermanifold, general reparametrizations of the fields

�U ! e�U = e�U (�) (46)

correspond to di�eomorphisms and hence invariance under (46) can be achieved applying di�eren-
tial supergeometry techniques as outlined in Section 4.

5.1 Deriving the Grand Metric

To complete the construction of the field-space supermanifold and equip with a metric, we need
to construct a pure field-space covector from Z `U. Since by construction this tensor cannot depend
on derivatives of the fields and there are no spacetime covectors in (44), the spacetime index ` in
Z `U must arise from a W` matrix. Hence, we can construct a pure field-space vector by introducing
a new type of di�erentiation with respect to the W` matrix:

ZU =
1
4
XZ `U
XW`

. (47)

In analogy with how the field strength tensor �`a is constructed in QED, we derive the following
rank-2 field-space tensor [89]

U_V =
1
2

 �!
m

m�U
ZV � (�1)U+V+UV

�!
m

m�V
ZU

!
. (48)

By construction (48), U_V is anti-supersymmetric and singualar in the presence of scalar fields.
Nonetheless one can combine U_V and U:V in such a way as to generate a matrix that is non-singular:

U⇤V = U:V + U_V . (49)

This matrix will play a fundamental role in the definition of the field-space metric.

5.2 Free Theory Example

To understand how to extract and utilise the model functions, consider the following canonically
normalised free theory example

L =
’

�2 scalars


1
2
6`am`q

�maq
� � 1

2
<2

�

⇣
q�

⌘2
�

+
’

-2 fermions


8

2

⇣
k̄-W`m`k

- � m`k̄-W`k-
⌘
� <-k̄

-k-

�
.

(50)
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Using (45) we can read o� the model functions to be

U:V =

 
X�⌫ 0#⇥8"

08"⇥# 08"⇥8"

!
, (51)

Z `U =
⇣
0# , k̄

1
§0W

`
00, W

`
§00k

1
0, k̄

2
§1W

`
§11, W

`
§11k

2
1, . . .

⌘
. (52)

Di�erentiating (52) with respect to W` according to (47) and substituting this into (49) we can
compute the matrix U⇤V to be

U⇤V = U#V ⌘

©≠≠≠≠≠≠≠≠≠
´

1# 0 0 0 0 . . .

0 0 14 0 0 . . .

0 14 0 0 0 . . .

0 0 0 0 14 . . .

0 0 0 14 0 . . .
...

...
...

...
...

. . .

™ÆÆÆÆÆÆÆÆÆ
¨

. (53)

5.3 Properties of the Grand Field-Space Metric

The Grand metric U⌧V (�) for the field-space supermanifold should satisfy the following
requirements:

1. The metric should be determined solely and uniquely from the action;

2. The metric should be a supersymmetric rank-2 field-space tensor;

3. The metric should not be singular in order to produce a non-zero line element;

4. The metric should be ultralocal, i.e. it should not depend on derivatives of the fields;

5. The metric should have the local form on each point of the field-space supermanifold [87, 89]:

0�1 ⌘

©≠≠≠≠≠≠≠≠≠
´

1# 0 0 0 0 · · ·
0 0 14 0 0 · · ·
0 �14 0 0 0 · · ·
0 0 0 0 14 · · ·
0 0 0 �14 0 · · ·
...

...
...

...
...

. . .

™ÆÆÆÆÆÆÆÆÆ
¨

. (54)

The matrix U⇤1 is non-singular but it is not supersymmetric and therefore cannot be used as the
field-space metric. To find a suitable metric for the field-space that satisfies the requirements listed
above we will make use of the vielbein formalism [90]. In a local inertial frame we expect the fields
to be locally canonical [91] with kinetic terms as in (50) and 0⇤1 = 0#1. Thus we can write

U⇤V = U4
0

0#1
14sT

V , (55)

where U40 are the vielbeins and 0#1 is as defined in (53). Once the vielbeins are found from (55),
the field-space metric U⌧V can be obtained as [89]

U⌧V = U4
0

0�1
14sT

V , (56)
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where 0�1 is the local metric defined in (54).
Once the metric is determined from (56), one can then define the Christo�el symbols as

�U
VW =

1
2

U⌧ X
h
X⌧V
 �
mW + (�1)VW X⌧W

 �
mV � (�1)V �!Xm V⌧W

i
, (57)

and from this covariant derivatives on the field-space

-U �r V = -U �mV + �U
VW-

W ,

-U
 �r V = -U

 �
mV � -W�

W
UV .

(58)

The field-space Riemann tensor is then defined as

'U
VWX =

h
��U

VW

 �
mX + (�1)WX �U

VX

 �
mW + (�1)W (f+V) �U

fW�
f
VX �(�1) X (f+V+W) �U

fX�
f
VW

i
.

(59)
Promoting the field-space to a configuration-space is now straightforward. Coordinates in configuration-
space are denoted by

�bU ⌘ �U (xU) , (60)

and the definition of the metric and metric connections are generalised as

bU⌧ bV = U⌧V X (4)
�
xU � xV

�
, (61)

and
bU�bVbW = U�VW X (4)

�
xU � xV

�
X (4)

�
xU � xW

�
. (62)

Making use of the metric (61), the configuration space line element is defined as

D⌃2 = 3�bU bU⌧ bV (�) 3�bV . (63)

Notice that (63) is written in terms of fully contracted configuration space tensors and is therefore
a superscalar.

Finally, the reparametrization invariant integral measure needed to construct a covariant path
integral reads

[DM] =
p
| sdet⌧ |

⇥
D#+8"�@

⇤
, (64)

where now �@ denotes collectively the �bU coordinates on the configuration-space as defined
through (60).

6. Grand Covariant E�ective Action with Fermions

We now possess all the tools needed to construct a reparametrization invariant expression
for the e�ective action using the VDW formalism [45–47, 80, 92]. The implicit equation for the
e�ective action reads [89]

exp
✓
8

\
�[�]

◆
=

π p
| sdet⌧ |

⇥
D�@

⇤
exp

 
8

\
(

⇥
�@

⇤
+ 8

\

π
34G
p�6 �[�]

 �
m

m�U
⌃U

⇥
�,�@

⇤ !
,

(65)
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where � denotes the mean field and ⌃U
⇥
�,�@

⇤
is defined in analogy to (26) to be a superposition

of supergeodesic tangent vectors fU
⇥
�,�@

⇤
:

⌃U
⇥
�,�@

⇤
=

⇣
⇠�1 [�]

⌘U
V fV

⇥
�,�@

⇤
, (66)

where the coe�cient now reads ⇠U
V [�] =

D
fU

⇥
�,�@

⇤ �r V

E
⌃
. Using a covariant expansion for

the action, the expressions for the one- and two-loop covariant e�ective action are found to be

� (1) [�] = 8

2
ln sdet bU(bV =

8

2
str ln bU(bV , (67)

� (2) [�] = �1
8
({bUbVbWbX }�XbW�bVbU + 1

12
(�1)bVbW+bn (bV+bX) ({bn bWbU}�

bUbV�bWX�bn bZ
{bZ bXbV }( , (68)

where bU(bV = bU�!r( �r bV and bU(bV = bU�!r( �r bV = bU (��1)bV . The inverse �bUbV , defined through

�bUbW bW(bV = bUXbV , is the frame-covariant propagator. It is easy to show that the propagator and its
inverse are both supersymmetric. The notation {. . .} denotes the operation of supersymmetrization
of the indices enclosed [89]:

{U1 . . . U2} =
1
=!

’
%

(�1)%%[U1 . . . U2], (69)

where % spans over all possible permutations of the = indices and the factor (�1)% yields �1 for
odd number of swaps between fermionic indices and 0 otherwise. Note that both (67) and (68) are
superscalars as one would expect. The presence of the pre-factor (�1) in the second term of (68)
does not spoil covariance but is consistent with the convention that only adjacent pairs of indices
can be contracted straightforwardly as explained in Section 4. The one- and two-loop e�ective
action results in (67) and (68) reduce to (30) and (31) in the absence of fermionic variables.

7. Conclusions

We have developed a fully covariant formalism for scalar-tensor theories of gravity by modi-
fying the standard Vilkovisky-DeWitt e�ective action to include a integral measure and functional
derivatives that are both frame and di�eomorphisms invariant. We have constructed the field-space
supermanifold for scalar-fermion theories and developed a rigorous algorithm for calculating the
field-space metric from the classical action by means of vielbeins. We have extended the VDW for-
malism on Supermanifolds and obtained an expression for the quantum e�ective action for theories
with fermions that is both frame- and reparametrization-invariant.

Since the VDW formalism has already been successfully applied to scalar theories, gauge
theories and gravity, the inclusion of fermions was the last milestone for a complete geometrisation
of a broad spectrum of QFTs. The natural next step would be to construct a field-space supermanifold
for realistic theories of high energy physics such as the Standard Model. We postpone this task to
future work.
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A. Single Fermion Example

As an explicit example of computation of the field-space metric, consider the theory with one
scalar field q and one Dirac fermion k described by the Lagrangian:

L =
1
2
: (q)m`qm`q � 1

2
⌘(q)k̄W`km`q + 8

2
6(q)k̄W`m`k

� 8

2
6(q)m`k̄W`k � . (q)k̄k �+ (q)

, (70)

where : , ⌘, 6,. and + are arbitrary real functions of q. Using (45) to find the model functions and
definitions (47) and (48), we can construct the rank-2 tensor U⇤V to be

U⇤V =
©≠≠
´

: 1
2 (60 � 8⌘) k̄ 1

2 (60 + 8⌘) k
1
2 (60 � 8⌘) k̄ 0 614
1
2 (60 + 8⌘) k 614 0

™ÆÆ
¨
. (71)

Substituting this into (55), we find the vielbeins to have the general form

U4
0 =

©≠≠
´

p
: 60+8⌘

26 k G 60 � 8⌘k̄G�1

0 G 0
0 0 6G�1

™ÆÆ
¨
, (72)

where G is an arbitrary invertible symmetric 4 ⇥ 4 matrix. The presence of the arbitrary matrix G

reflects that the vielbeins are not determined uniquely by the condition (55). However, note that
this ambiguity does not appear in the expression for the metric, because G is eliminated when the
products between the vielbein and its supertranspose is taken. Substituting the vielbeins into (56)
we find the field-space metric to be

U⌧V =
©≠≠
´

: � 602+⌘2

26 k̄k �1
2 (60 � 8⌘) k̄ 1

2 (60 + 8⌘) k
1
2 (60 � 8⌘) k̄ 0 614

�1
2 (60 + 8⌘) k �614 0

™ÆÆ
¨
, (73)

which is supersymmetric as expected. With the metric (73), one can now calculate the metric
connection components according to (57). Using these to compute the Riemann tensor according
to (59), yields 'U

VWX = 0, i.e. the field-space for this theory is everywhere flat. This implies in turn
that the theory (33) can be made canonical after a suitable reparametrization of the fields:

q! eq =
π q

0

p
: (q0)3q0, k ! ek =

p
6(q) exp

✓
8

2

π q

0

⌘(q0)
6(q0) 3q

0
◆
k, (74)

In this Cartesian frame the Lagrangian (33) now reads

L =
1
2
m`eqm`eq + 8

2
ēkW`m`ek � 8

2
m`ēkW`ek � e. (eq)ēkek � e+ (eq), (75)

with e. (eq) = . (q)/6(q) and e+ (eq) = + (q). For the canonically normalised theory (75) we can now
compute the covariant propagator and from this the one-loop covariant e�ective action:

�[�] =([�] + 8

2
Tr ln

n
⇤ + e+ 00(eq) � ēk h

2e. 0(eq) (�8 /m + e. (eq))�1e. 0(eq) � e. 00(eq)i eko
� 8 Tr ln(�8 /m + e. (eq)). (76)

This is consistent with previous results in the literature, e.g. see eq. (8.49) in [93].
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