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1. Introduction

The discovery of neutrino oscillations showed that the neutrinos have mass whereas in the SM
they are massless[2].

Although the Standard Model of Particle Physics(SM) has been verified by the discovery of
the Higgs boson at CERN[1], neutrino’s masses remain as one of the most important problems of
Particle Physics. Since neutrinos appear to have left handed chirality, this is not a simple task.

The seesaw mechanism is a popular scheme to obtain massive neutrinos[3]. However, new
interactions and particles are required.

One possibility to have massive chiral neutrinos is Very Special Relativity(VSR)[4]
VSR assumes that the true symmetry of Nature is not the full Lorentz group, but some of its

subgroups. The most interesting of these subgoups are 𝑆𝑖𝑚(2) and 𝐻𝑜𝑚(2). Using these subgroups
new terms are allowed such that the neutrino get a mass, preserving its chirality[5].

Various applications of VSR have been considered, like the inclusion of supersymmetry [6, 7],
curved spaces [8, 9], noncommutativity [10, 11] , dark matter [12] and also in cosmology [13].

Some time ago, we proposed the SM with VSR[14] (VSRSM).Its particle composition and
interactions are the same as in the SM, but neutrinos can have a VSR mass without lepton number
violation.

Loop computations in VSR are non trivial though. New infrared divergences appear and
they have to be regularized. We studied how to do so using the calculation of integrals in the
Mandelstam-Leibbrandt (ML) prescription[15],[16] introduced in [17], in [18] and [19]. The Ward
identities corresponding to the gauge and the 𝑆𝑖𝑚(2) symmetry of the model are preserved.

Two years ago, we applied these techniques to the Schwinger model in VSR [20] and to the
photon mass in VSR [21].

As the SM, the VSRSM is a chiral gauge symmetry theory,so the presence of chiral anomalies
may destroy the consistency of the model, because the gauge symmetry will be lost and renormal-
izability and unitarity could not be simultaneously realized.Therefore a very important test that it
has to satisfy is the cancellation of axial anomalies.

In [20] we did a computation of the two dimensional axial anomaly. We obtained that the vector
current is conserved and the axial anomaly get a correction from VSR in the form of a multiplicative
factor.

The authors of [22] tried to compute the axial anomaly in four dimensions using the prescription
to treat 𝛾5 introduced in [23]. They claim that there is an anomaly in the vector current as well as
in the axial vector current. However their computation missed two important graphs.(Please see
chapter IV).

In this work we review the calculations contained in [24]. We explain how to compute the axial
anomaly in two and four dimensions using Pauli-Villars (PV) and dimensional(DR) regularization
of ultraviolet divergences and ML prescription for infrared divergences. Extra graphs appear,
due to the non-locality of the currents. They must be there to preserve the Schwinger-Dyson
equations(chapter VIII). We show explicitly that the vector current is conserved and that the axial
anomaly is the same we get in Lorentz invariant Electrodynamics, without any correction from
VSR. Our result relies on two properties of the ML prescription: First, it allows shifting of the loop
momentum variable(which implies gauge invariance) and second, it respects naive power counting.
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One important conclusion to be drawn from this is that VSRSM is consistent because is free
from axial anomalies.

A gauge invariant mass term for the gauge field is possible in VSR[14, 25, 26]. Here, we did
not include such a mass term for the photon because it will not affect the axial anomaly, since the
axial anomaly is due to a loop of fermions.

The paper is written as follows. In chapter II we define the lagrangian of VSR Electrodynamics
and derive the Feynman rules that will be used to compute the anomalies.In chapter III we compute
the axial anomaly in two dimensional space time. In chapter IV we study the axial anomaly in four
dimensions. In chapter V we study the axial anomaly in 2d using DR. In chapter VI, we derive the
axial anomaly in 4d, using DR. In chapter VII we present the derivation of the axial anomaly using
the path integral. In chapter VIII we derive the Schwinger-Dyson identity for the product of three
currents. Extra terms appear. This is an important new result of our calculation. Finally in chapter
IX we draw some conclusions.

2. VSRSM Electrodynamics

The Electrodynamics sector of the VSRSM in the Feynman gauge.

L = 𝜓̄

(
𝑖

(
/𝐷 + 1

2 /𝑛𝑚
2(𝑛 · 𝐷)−1

)
− 𝑀

)
𝜓 − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 −
(𝜕𝜇𝐴𝜇)2

4
(1)

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

The vector current(electric charge conservation) is:

𝑗 𝜇 = 𝜓̄𝛾𝜇𝜓 + 1
2
𝑚2

(
1

𝑛 · 𝐷† 𝜓̄

)
/𝑛𝑛𝜇

(
1

𝑛 · 𝐷𝜓

)
The axial vector current is:

𝑗 𝜇5 = 𝜓̄𝛾𝜇𝛾5𝜓 + 1
2
𝑚2

(
1

𝑛 · 𝐷† 𝜓̄

)
/𝑛𝑛𝜇𝛾5

(
1

𝑛 · 𝐷𝜓

)
Both currents are conserved at the classical level[20]. We are interested in computing expectation
values of these currents.

To get the Feynman rules we use the expansion of (𝑛.𝐷)−1 both in the currents and the
lagrangian.

(𝑛.𝐷)−1 =

(1 + 𝑖𝑒(𝑛.𝜕)−1(𝑛.𝐴) + (𝑖𝑒)2(𝑛.𝜕)−1(𝑛.𝐴) (𝑛.𝜕)−1(𝑛.𝐴) + (𝑖𝑒)3(𝑛.𝜕)−1(𝑛.𝐴) (𝑛.𝜕)−1(𝑛.𝐴) (𝑛.𝜕)−1(𝑛.𝐴)) (𝑛.𝜕)−1 + ...

The Feynman rules are listed in Appendix A.

3. Two dimensional axial anomaly

In this case we have to compute the expectation value of the axial vector current in a background
field 𝐴𝜈 . We use the convention of [27],𝜖01 = +1.

< 𝑗5𝜈 (𝑞) >=
∫

𝑑2𝑥 < 𝑗5𝜈 (𝑥) > 𝑒𝑖𝑞𝑥 = (−𝑖𝑒)−1𝑖Π5𝜇𝜈 (𝑞)𝐴𝜇 (2)
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Figure 1

The contribution to the two dimensional anomaly in VSR Electrodynamics is given by the two
graphs (Figure 1 and Figure 2):

𝑖Π15𝜇𝜈 = −(−𝑖𝑒)2
∫

𝑑𝑝 Tr{
[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝑖

(
/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝛾5

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} (3)

Figure 2

𝑖Π25𝜇𝜈 =

(−1) (𝑖𝑒)2𝑛𝜇𝑛𝜈𝑖

∫
𝑑𝑝(𝑛.𝑝)−1(𝑛.𝑝)−1 [(𝑛.(𝑞 + 𝑝))−1 + (𝑛.(−𝑞 + 𝑝))−1] Tr{1

2 /𝑛𝑚
2
𝑖

(
/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5} (4)

Notice that Figure 2 is absent from the standard computation of the axial anomaly. It is the
result of the non-locality of the currents. (Please see chapter VIII).

To compute the axial anomaly we will use Pauli-Villars regularization and Mandelstam-
Leibbrandt prescription to treat infrared divergences. We will follow reference [28].

Notice that equation (3) is logarithmically divergent and equation (4) is finite.
It is easy to check that formally:

𝑞𝜇 (Π15𝜇𝜈 + Π25𝜇𝜈) = 0

if shift of the integration variable 𝑝 → 𝑝 + 𝑘 is allowed. Here 𝑘 is a constant vector. This would be
true if the integral (3) would be finite.(Appendix B).

Introduce a Pauli-Villars particle of mass 𝑀̄ and define the regularized amplitude:

Π5𝑅𝜇𝜈 (𝑀, 𝑀̄, 𝑞) = Π15𝜇𝜈 (𝑀, 𝑞) + Π25𝜇𝜈 (𝑀, 𝑞) − Π15𝜇𝜈 (𝑀̄, 𝑞) − Π25𝜇𝜈 (𝑀̄, 𝑞)
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Since Π5𝑅𝜇𝜈 (𝑀, 𝑀̄, 𝑞) is finite, it satisfies the naive Ward identity(electric charge conservation):

𝑞𝜇Π
5𝑅𝜇𝜈 (𝑀, 𝑀̄, 𝑞) = 0

On the other hand, the axial Ward identity is, formally:

𝑖(Π15𝜇𝜈 + Π25𝜇𝜈)𝑞𝜈 = 2𝑀A(𝑀, 𝑞)𝜇

= 2𝑀 (−𝑖𝑒)2
∫
𝑑𝑝 Tr

{[
𝛾𝜇 + 1

2𝑛
𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1] 𝑖

(
/𝑝+𝑀−𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2−𝑀2−𝑚2+𝑖 𝜀 𝛾5 𝑖

(
( /𝑝+/𝑞)+𝑀−𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝+𝑞)2−𝑀2−𝑚2+𝑖 𝜀

}
(5)

if shift of the integration variable 𝑝 → 𝑝 + 𝑘 is allowed.
Therefore the regularized amplitude satisfies:

𝑖Π5𝑅𝜇𝜈 (𝑀, 𝑀̄, 𝑞)𝑞𝜈 = 2𝑀A(𝑀, 𝑞)𝜇 − 2𝑀̄A(𝑀̄, 𝑞)𝜇

Since the original amplitude is obtained formally as 𝑙𝑖𝑚𝑀̄→∞, the axial anomaly is given by:

𝐵𝜇 = 𝑙𝑖𝑚𝑀̄→∞(−2𝑀̄A(𝑀̄, 𝑞)𝜇)

Now, we compute (5). First notice that after computing the trace, the integral is finite. A tipical
term containing the vector 𝑛𝜇 is of the form:

𝐶𝜇 = 2𝑀2𝑚2(−𝑖𝑒)2𝜀𝜇𝛼𝑛𝛼

∫
𝑑𝑝

1
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

1
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

1
𝑛.𝑝

Now we recall an important property of ML prescription. It preserves naive power counting.
According to this, 𝐶𝜇 ∼ 𝑀−1 for large 𝑀 .

In the same way, we can check easily that all terms containing 𝑛𝜇 vanish when 𝑀 → ∞.
It remains the Lorentz invariant term:

𝑖Π5𝜇𝜈 (𝑞)𝑞𝜈 = 𝑙𝑖𝑚𝑀̄→∞(−4𝑒2)𝑀̄2𝜀𝛼𝜇𝑞𝛼

∫
𝑑𝑝

1
𝑝2 − 𝑀̄2 − 𝑚2 + 𝑖𝜀

1
(𝑝 + 𝑞)2 − 𝑀̄2 − 𝑚2 + 𝑖𝜀

= −𝑖 𝑒
2

𝜋
𝜀𝛼𝜇𝑞𝛼 (6)

𝑞𝜈 < 𝑗5𝜈 >=
1
−𝑖𝑒 𝑖Π

5𝜇𝜈 (𝑞)𝐴𝜇𝑞𝜈 =
𝑒

𝜋
𝜀𝛼𝜇𝑞𝛼𝐴𝜇 (7)

Equation (7) is the standard Lorentz invariant result[27].
We want to comment on a previous computation of the anomaly in [20]. There and here, the

vector current is conserved, but a different axial anomaly is obtained. This difference may be a result
of different normalization conditions[28] or the extra freedom we have when Lorentz symmetry is
broken[29] .

It is clear though that the procedure used in [20] does not respect naive power counting of the
loop integrals.
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Figure 3: Π5𝜇𝜈𝛿

4. Four dimensional axial anomaly

We compute:∫
𝑑4𝑥𝑒−𝑖𝑟 𝑥 < 𝑝, 𝑞 | 𝑗 𝜇5(𝑥) |0 >= (2𝜋)4𝛿(−𝑟 + 𝑝 + 𝑞)𝜀∗𝜈 (𝑞)𝜀∗𝛿 (𝑝)𝑖Π𝜇𝜈𝛿

There are four graphs that contribute to the axial anomaly in four dimensions (Figure 3-6).
Notice that in [22] Figure 5,6 are missing. They are fundamental to satisfy the Ward identity for
the vector current(charge conservation) as well as the right computation of the axial anomaly.

𝑖Π15𝜇𝜈𝛿 = −(−𝑖𝑒)2
∫

𝑑𝑘 Tr{
[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑞))−1(𝑛.(𝑘 − 𝑝))−1

]
𝛾5

𝑖

( (
/𝑘 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑞)

)
(𝑘 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀[

𝛾𝜈 + 1
2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑞))−1(𝑛.𝑘)−1

] 𝑖 (/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑘

)
𝑘2 − 𝑀2 − 𝑚2 + 𝑖𝜀[

𝛾 𝛿 + 1
2
𝑛𝛿 (/𝑛) 𝑚2(𝑛.(𝑘 − 𝑝))−1(𝑛.𝑘)−1

] 𝑖 (/𝑘 − /𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘−𝑝)

)
(𝑘 − 𝑝)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} + (𝑝, 𝛿) → (𝑞, 𝜈) (8)

Figure 4: Π25𝜇𝜈𝛿

𝑖Π25𝜇𝜈𝛿 = (−1) (𝑖𝑒)2𝑛𝛿𝑛𝜈𝑖

∫
𝑑𝑘 (𝑛.𝑘)−1(𝑛.(𝑘 − 𝑝 − 𝑞))−1 [(𝑛.(𝑘 − 𝑞))−1 + (𝑛.(𝑘 − 𝑝))−1]

Tr{1
2 /𝑛𝑚

2
𝑖

(
/𝑘 − /𝑝 − /𝑞 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘−𝑝−𝑞)

)
(𝑘 − 𝑝 − 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.𝑘)−1(𝑛.(𝑘 − 𝑝 − 𝑞))−1

]
𝛾5

𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑘

)
𝑘2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} (9)
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Figure 5: Π35𝜇𝜈𝛿

𝑖Π35𝜇𝜈𝛿 = (−1) (𝑖𝑒)2𝑛𝛿𝑛𝜇𝑖

∫
𝑑𝑘 (𝑛.𝑘)−1(𝑛.(𝑘 − 𝑞))−1 [(𝑛.(𝑘−𝑞−𝑝))−1 + (𝑛.(𝑘 + 𝑝))−1]

Tr


1
2 /𝑛𝑚

2𝛾5
𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑘

)
𝑘2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.𝑘)−1(𝑛.(𝑘 − 𝑞))−1

] 𝑖 (/𝑘 − /𝑞 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘−𝑞)

)
(𝑘 − 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀


+(𝑝, 𝛿) → (𝑞, 𝜈) (10)

Figure 6: Π45𝜇𝜈𝛿

𝑖Π45𝜇𝜈𝛿 = (−1) (𝑖𝑒)2𝑛𝜈𝑛𝜇𝑛𝛿𝑖

∫
𝑑𝑘{ 1

𝑛.𝑘

1
𝑛.𝑘

[ 1
𝑛.(𝑘 + 𝑝 + 𝑞)

1
𝑛.(𝑘 + 𝑝) +

1
𝑛.(𝑘 + 𝑝 + 𝑞)

1
𝑛.(𝑘 + 𝑞) +

1
𝑛.(𝑘 − 𝑝)

1
𝑛.(𝑘 − 𝑝 − 𝑞) +

1
𝑛.(𝑘 − 𝑞)

1
𝑛.(𝑘 + 𝑝) +

1
𝑛.(𝑘 − 𝑝)

1
𝑛.(𝑘 + 𝑞) +

1
𝑛.(𝑘 − 𝑞)

1
𝑛.(𝑘 − 𝑝 − 𝑞) ]}

Tr


1
2 /𝑛𝑚

2𝛾5 [𝑖]
𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘 )

)
(𝑘)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

 (11)

Notice that Π25𝜇𝜈𝛿 ,Π35𝜇𝜈𝛿 ,Π45𝜇𝜈𝛿 are ultraviolet finite. Only Π15𝜇𝜈𝛿 is linearly divergent as
in the Lorentz invariant electrodynamics.

Figures (4-6) are new additions, due to the non-locality of the currents(chapter VIII).
To compute the axial anomaly we will use Pauli-Villars regularization and Mandelstam-

Leibbrandt prescription to treat infrared divergences. We will follow reference [28].
It is easy to check that formally:

(Π15𝜇𝜈𝛿 + Π25𝜇𝜈𝛿 + Π35𝜇𝜈𝛿 + Π45𝜇𝜈𝛿)𝑝 𝛿 = 0

7



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
1
3

Very Special Relativity Axial Anomaly Jorge Alfaro

if shift of the integration variable 𝑘 → 𝑘 +𝑄 is allowed. Here 𝑄 is a constant vector.1
Introduce a Pauli-Villars particle of mass 𝑀̄ and define the regularized amplitude:

Π5𝑅𝜇𝜈𝛿 (𝑀, 𝑀̄, 𝑝, 𝑞) = (Π15𝜇𝜈𝛿 + Π25𝜇𝜈𝛿 + Π35𝜇𝜈𝛿 + Π45𝜇𝜈𝛿) (𝑀, 𝑝, 𝑞) −
(Π15𝜇𝜈𝛿 + Π25𝜇𝜈𝛿 + Π35𝜇𝜈𝛿 + Π45𝜇𝜈𝛿) (𝑀̄, 𝑝, 𝑞)

SinceΠ5𝑅𝜇𝜈𝛿 (𝑀, 𝑀̄, 𝑝, 𝑞) is finite, it satisfies the naive Ward identity(electric charge conservation):

Π5𝑅𝜇𝜈𝛿 (𝑀, 𝑀̄, 𝑝, 𝑞)𝑝 𝛿 = 0

Besides, the axial Ward identity formally is,if shift of the integration variable 𝑘 → 𝑘 +𝑄 is allowed:

−(𝑝 + 𝑞)𝜇𝑖(Π15𝜇𝜈𝛿 + Π25𝜇𝜈𝛿 + Π35𝜇𝜈𝛿 + Π45𝜇𝜈𝛿) = 2𝑀A(𝑀, 𝑝, 𝑞)𝜈𝛿 =

−2𝑀 (−𝑖𝑒)2
∫

𝑑𝑘{Tr{𝛾5
𝑖

( (
/𝑘 + /𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑝+𝑞)

)
(𝑘 + 𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑝 + 𝑞))−1(𝑛.(𝑘 + 𝑝))−1

]
𝑖

(
/𝑘 + /𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑝)

)
(𝑘 + 𝑝)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾 𝛿 + 1

2
𝑛𝛿 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑝))−1(𝑛.𝑘)−1

] 𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘 )

)
(𝑘)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} + (𝑝, 𝛿) → (𝑞, 𝜈)} (12)

(−2𝑀) (𝑖𝑒)2𝑛𝛿𝑛𝜈𝑖

∫
𝑑𝑘 (𝑛.𝑘)−1(𝑛.(𝑘 − 𝑝 − 𝑞))−1 [(𝑛.(𝑘 − 𝑞))−1 + (𝑛.(𝑘 − 𝑝))−1]

Tr[1
2 /𝑛𝑚

2
𝑖

(
/𝑘 − /𝑝 − /𝑞 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘−𝑝−𝑞)

)
(𝑘 − 𝑝 − 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5

𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑘

)
𝑘2 − 𝑀2 − 𝑚2 + 𝑖𝜀

] (13)

The term (13) is convergent and has zero trace in four dimensions. So it vanishes.
Therefore the regularized amplitude satisfies:

−(𝑝 + 𝑞)𝜇𝑖Π5𝑅𝜇𝜈𝛿 (𝑀, 𝑀̄, 𝑝, 𝑞) = 2𝑀A(𝑀, 𝑝, 𝑞)𝜈𝛿 − 2𝑀̄A(𝑀̄, 𝑝, 𝑞)𝜈𝛿

Since the original amplitude is obtained formally as 𝑙𝑖𝑚𝑀̄→∞, the axial anomaly is given by:

𝐴𝜈𝛿 = 𝑙𝑖𝑚𝑀̄→∞(−2𝑀̄A(𝑀̄, 𝑝, 𝑞)𝜈𝛿)

After computing the trace, we use ML prescription to regulate the infrared divergences. A(𝑀, 𝑝, 𝑞)𝜈𝛿
is ultraviolet finite

A remarkable property of ML prescription is that preserve naive power counting. Using this
property, we can easily show that all terms containing 𝑛𝜇 in A(𝑀, 𝑝, 𝑞)𝜈𝛿 are smaller than 𝑀−2

for large 𝑀 , so they do not contribute to the axial anomaly.
A𝜈𝛿 = lim𝑀̄→∞

8𝑀̄2𝜀𝜈𝛿𝛼𝛽𝑝𝛼𝑞𝛽 (−𝑖𝑒)2
∫

𝑑4𝑘
1

(𝑘 + 𝑝)2 − 𝑚2 − 𝑀̄2
1

𝑘2 − 𝑚2 − 𝑀̄2
1

(𝑘 + 𝑝)2 − 𝑚2 − 𝑀̄2

1This is true if we use DR as in chapter V and VI.
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That is:

A𝜈𝛿 = −(𝑖𝑒)2 𝑖

2𝜋2 𝜀
𝜈𝛿𝛽𝜇𝑝𝛽𝑞𝜇

This is the standard result [28][27].
We see that Pauli-Villars regularization of ultraviolet divergences and Mandelstam-Leibbrandt

regularization of infrared divergences preserve the Ward identity for the vector current(electric
charge conservation) as well as the standard anomaly for the axial current, without modification
from VSR terms.

5. Two dimensional axial anomaly in dimensional regularization

To treat 𝛾5 we follow the prescription of [23]. That is, in any number of dimensions

𝛾5 = 𝑖𝛾0𝛾1

{𝛾5, 𝛾𝜇} = 0.𝜇 = 0, 1; [𝛾5, 𝛾𝜇] = 0, 𝜇 = 2, 3 . . . ., 𝑑
𝑞𝜇, 𝑛

𝜇 are two dimensional vectors . 𝑝𝜇 is 𝑑 − dimensional

𝑖Π15𝜇𝜈𝑞𝜈 = −(−𝑖𝑒)2
∫

𝑑𝑝 Tr{
[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

(/𝑞 + 1
2
𝑛.𝑞 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1)𝛾5

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

}

Write

/𝑝 = /𝑝1 + /𝑝2; 1 lives in two dimensions, 2 lives in 𝑑 − 2 dimensions

Now we use the identity: [
/𝑞 + 1

2
𝑛.𝑞 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
=[

/𝑝 + /𝑞 − 1
2 /𝑛𝑚

2(𝑛.(𝑝 + 𝑞))−1 − 𝑀 −
(
/𝑝 − 𝑚2/𝑛

2𝑛.𝑝
− 𝑀

)]
(14)

Π15𝜇𝜈𝑞𝜈 = −(−𝑖𝑒)2
∫

𝑑𝑝 Tr{−
[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝛾5

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

+[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5(−)[(
/𝑝1 − /𝑝2 + /𝑞 − 1

2 /𝑛𝑚
2(𝑛.(𝑝 + 𝑞))−1 − 𝑀

)
+ 2𝑀

] 𝑖 ( (/𝑝 + /𝑞
)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} (15)
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= −(−𝑖𝑒)2
∫

𝑑𝑝 Tr
𝛾5

[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 ( (/𝑝 + /𝑞
)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

− (16)

𝛾5
[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} + (17)

2𝑀 (−𝑖𝑒)2
∫

𝑑𝑝 Tr

[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀


−(−𝑖𝑒)2

∫
𝑑𝑝 Tr


[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾52/𝑝2

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀


In dimensional regularization we can shift variable 𝑝 → 𝑝 − 𝑞 in the term (16). Then the addition
of terms (16) and (17 )is canceled by the contribution of Figure 2.

The anomaly is:

𝐴𝜇 = −(−𝑖𝑒)2∫
𝑑𝑝 Tr


[
𝛾𝜇 + 1

2
𝑛𝜇 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾52/𝑝2

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

 (18)

That is:

𝐴𝜇 = 4(−𝑖𝑒)2
∫

𝑑𝑝

[
−𝑝2

2𝜀
𝜇𝜈𝑞𝜈 − 𝑝2

2
1
2𝑛

𝜇𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1𝜀𝛼𝛽𝑛𝛼𝑞𝛽
]

(𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀) ((𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀)

𝑝2
2 ∼ (𝑑 − 2)𝑝2 when 𝑑 → 2. The VSR part of the integral is convergent, using ML prescription,

so it is zero, when we take 𝑑 = 2.
So only the Lorentz invariant part of the integral contributes to the anomaly.

𝐴𝜇 = 4𝑒2𝜀𝜇𝜈𝑞𝜈

∫
𝑑𝑝

𝑝2
2

𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀 (𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀
=

𝑒2𝜀𝜇𝜈𝑞𝜈
𝑖

𝜋
(19)

That is:

𝑞𝜇 < 𝑗5𝜇 (𝑞) >= 𝑒2

−𝑖𝑒 𝜀
𝜇𝜈𝑞𝜈

𝑖

𝜋
𝐴𝜇 = − 𝑒

𝜋
𝜀𝜇𝜈𝑞𝜈𝐴𝜇 =

𝑒

𝜋
𝜀𝜈𝜇𝑞𝜈𝐴𝜇

which is the standard result[27].
In Appendix B we study the vector Ward identity. If we use dimensional regularization there,

then shifting the integration variable 𝑝− > 𝑝 + 𝑄 is allowed. So the naive Ward identity for the
vector current is satisfied without anomaly.
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6. 4d axial anomaly. Dimensional regularization

In this section we compute the axial anomaly using dimensional regularization. The contribu-
tion of Figure 3 is:

−(𝑝 + 𝑞)𝜇𝑖Π15𝜇𝜈𝛿 = −(−𝑖𝑒)2
∫

𝑑𝑘 Tr{
[
−
(
/𝑝 + /𝑞

)
− 1

2
(𝑝 + 𝑞).𝑛 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑞))−1(𝑛.(𝑘 − 𝑝))−1

]
𝛾5

𝑖

( (
/𝑘 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑞)

)
(𝑘 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑞))−1(𝑛.𝑘)−1

] 𝑖 (/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑘

)
𝑘2 − 𝑀2 − 𝑚2 + 𝑖𝜀[

𝛾 𝛿 + 1
2
𝑛𝛿 (/𝑛) 𝑚2(𝑛.(𝑘 − 𝑝))−1(𝑛.𝑘)−1

] 𝑖 (/𝑘 − /𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘−𝑝)

)
(𝑘 − 𝑝)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

}

Write /𝑘 = /𝑘1 + /𝑘2(
/𝑘1 + /𝑘2 + /𝑝 + /𝑞 + 𝑀

)
𝛾5 = −𝛾5

(
/𝑘1 + /𝑘2 + /𝑝 + /𝑞 + 𝑀

)
+ 2𝛾5/𝑘2 + 2𝑀𝛾5

That is the anomaly is:

Γ5𝜈𝛿 (𝑝, 𝑞) =

2(−𝑖𝑒)2
∫

𝑑𝑘 Tr{𝛾5/𝑘2

𝑖

( (
/𝑘 + /𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑝+𝑞)

)
(𝑘 + 𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑝 + 𝑞))−1(𝑛.(𝑘 + 𝑝))−1

]
𝑖

(
/𝑘 + /𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘+𝑝)

)
(𝑘 + 𝑝)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾 𝛿 + 1

2
𝑛𝛿 (/𝑛) 𝑚2(𝑛.(𝑘 + 𝑝))−1(𝑛.𝑘)−1

] 𝑖

(
/𝑘 + 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑘 )

)
(𝑘)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} (20)

To compute the trace, we notice that there must be an even number of /𝑘2 otherwise the trace
vanishes. Assume there are four /𝑘2

Tr
{
𝛾5/𝑘2/𝑘2𝛾

𝜈/𝑘2𝛾
𝛿/𝑘2

}
= (𝑘2

2)
2 Tr{𝛾5𝛾𝜈𝛾 𝛿} = 0

That is, only two /𝑘2 contribute to the trace.
The trace can be written as Tr = 𝑘2

2𝑆

But 𝑘2
2𝑆 ∼ (𝑑 − 4)𝑘2𝑆. So if 𝑘2𝑆 is convergent in 𝑑 = 4 the contribution of this 𝑆 vanishes.If

we use ML prescription to regularize the infrared divergences we can show that 𝑘2𝑆 is convergent in
𝑑 = 4 for all VSR 𝑆’s, since ML preserves naive power counting. Therefore only Lorentz invariant
terms contribute to the anomaly.

Finally the anomaly is:

Γ5𝜈𝛿 (𝑝, 𝑞) = 2(−𝑖𝑒)2𝑖3
∫

𝑑𝑘𝑘2
2

Tr
{
𝛾5

(
/𝑞
)
𝛾𝜈

(
/𝑝
)
𝛾𝛿

}
(𝑘 + 𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

1
(𝑘 + 𝑝)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

1
(𝑘)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

= −𝑖 𝑒
2

2𝜋2 𝜀
𝜈𝛿𝛼𝜇𝑝𝛼𝑞𝜇 (21)

Therefore

< 𝑝, 𝑞 |𝜕𝜇 𝑗5𝜇 (0) |0 >= − 𝑒2

2𝜋2 𝜀
𝜇𝜈𝛼𝛿 (−𝑖𝑞𝜇)𝜀∗𝜈 (𝑞) (−𝑖𝑝𝛼)𝜀∗𝛿 (𝑝) (22)
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which is the standard result[27].
Following the same reasoning as in Appendix B, we can study the vector Ward identity in

four dimensions. If we use dimensional regularization there, then shifting the integration variable
𝑘− > 𝑘+𝑄 is allowed. So the naive Ward identity for the vector current is satisfied without anomaly.

7. Path integral derivation of the axial anomaly

We use the approach of [30].
The generating functional in the presence of an external field 𝐴𝜇 is;

𝑍 =

∫
D𝜓D𝜓̄𝑒𝑖

∫
𝑑4𝑥𝜓̄𝑖 /D𝜓

where the gauge invariant and 𝑆𝑖𝑚(2) invariant Dirac operator is
/D = /𝐷 + 1

2 /𝑛𝑚
2(𝑛 · 𝐷)−1, 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇

Introduce a basis of eigenvectors of /D

/D𝜙𝑚 = 𝜆𝑚𝜙𝑚, (23)∫
𝑑4𝑥𝜙†𝑛 (𝑥)𝜙𝑚(𝑥) = 𝛿𝑛𝑚, (24)∑︁

𝑛

𝜙𝑛 (𝑥)𝜙†𝑛 (𝑦) = 𝛿(𝑥 − 𝑦) (25)

We can expand

𝜓(𝑥) =
∑︁
𝑚

𝑎𝑚𝜙𝑚(𝑥), 𝜓̄(𝑥) = ∑
𝑚 𝑎̄𝑚𝜙

†
𝑚(𝑥)

The integration measure is defined by:

D𝜓D𝜓̄ =
∏
𝑚

𝑑𝑎𝑚𝑑𝑎̄𝑚

Under the change of variables:

𝜓′(𝑥) = (1 + 𝑖𝛼(𝑥)𝛾5)𝜓(𝑥)

we get:

D𝜓′D𝜓̄′ = J −2D𝜓D𝜓̄ (26)

where the jacobian J is given by:

log J = 𝑖

∫
𝑑4𝑥𝛼(𝑥)

∑︁
𝑛

𝜙†𝑛 (𝑥)𝛾5𝜙𝑛 (𝑥) (27)

To evaluate it we introduce a gauge invariant and Sim(2) invariant regularization:∑︁
𝑛

𝜙†𝑛 (𝑥)𝛾5𝜙𝑛 (𝑥) = lim
𝑀→∞

∑︁
𝑛

𝜙†𝑛 (𝑥)𝛾5𝜙𝑛 (𝑥)𝑒−
𝜆2
𝑛

𝑀2 =

lim
𝑀→∞

< 𝑥

�����Tr
{
𝛾5𝑒

− ( /D)2

𝑀2

}����� 𝑥 >

12
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Tr traces over Dirac indices.
Since this expression is finite, we can evaluate the trace in a plane wave basis.

lim
𝑀→∞

< 𝑥

�����Tr
{
𝛾5𝑒

− ( /D)2

𝑀2

}����� 𝑥 >= lim
𝑀→∞

Tr
∫

𝑑4𝑘

(2𝜋)4 𝑒
−𝑖𝑘𝑥𝛾5𝑒

− ( /D)2

𝑀2 𝑒𝑖𝑘𝑥 =

lim
𝑀→∞

Tr
∫

𝑑4𝑘

(2𝜋)4 𝛾
5𝑒

−(𝑖/𝑘+ /𝐷+ 1
2 /𝑛𝑚2 (𝑛· (𝑘+𝐷) )−1)2

𝑀2 , 𝑘𝜇 → 𝑀𝑘𝜇

= lim
𝑀→∞

𝑀4 Tr
∫

𝑑4𝑘

(2𝜋)4 𝛾
5𝑒

−
(
𝑖/𝑘+ /𝐷/𝑀+ 1

2
1

𝑀2 /𝑛𝑚2 (𝑛· (𝑖𝑘+𝐷/𝑀 ) )−1
)2

(28)

We have used that ML preserve scaling.
The only term that survives the limit is:

=
1
2

∫
𝑑4𝑘

(2𝜋)4 𝑒
𝑘2

Tr(𝛾5 /𝐷4) (29)

We have that: ( /𝐷)2
= 𝐷𝜇𝐷𝜈𝑔

𝜇𝜈 − 𝑒

2
𝐹𝜇𝜈𝜎

𝜇𝜈 , 𝜎𝜇𝜈 =
𝑖

2
[𝛾𝜇, 𝛾𝜈]

We use:

< 𝑥

���𝑒−𝜕2
��� 𝑥 >= lim

𝑥→𝑦

∫
𝑑4𝑘

(2𝜋)4 𝑒
−𝑖𝑘 (𝑥−𝑦)𝑒𝑘

2
=

𝑖

∫
𝑑4𝑘𝐸

(2𝜋)4 𝑒
−𝑘2

𝐸 = 𝑖
1

16𝜋2

Then:

lim
𝑀→∞

< 𝑥

�����Tr

{
𝛾5𝑒

− ( /D2)
𝑀2

}����� 𝑥 >= − 𝑒2

32𝜋2 𝜀
𝛼𝛽𝜇𝜈𝐹𝛼𝛽 (𝑥)𝐹𝜇𝜈 (𝑥)

That is:

J = exp
(
−𝑖

∫
𝑑4𝑥𝛼(𝑥) 𝑒2

16𝜋2 𝜀
𝛼𝛽𝜇𝜈𝐹𝛼𝛽 (𝑥)𝐹𝜇𝜈 (𝑥)

)
Then the Adler-Bell-Jackiw anomaly follows.

Notice that we could get this result assuming that the infrared regulator of 1
𝑛.𝜕

preserves
scaling(naive power counting). To garanty this property we work with the ML prescription, as in
the perturbative approach.

13
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8. Schwinger-Dyson (SD)identity for the product of three currents in VSR

We follow [27] page 311.
The vector current is:

𝑗 𝜇 = 𝜓̄𝛾𝜇𝜓 + 1
2
𝑚2𝑛𝜇 ((𝑛 · 𝜕)−1𝜓̄) ̸ 𝑛(𝑛 · 𝜕)−1𝜓

The axial vector current is:

𝑗 𝜇5 = 𝜓̄𝛾𝜇𝛾5𝜓 + 1
2
𝑚2

(
1

𝑛 · 𝜕 𝜓̄
)
̸ 𝑛𝑛𝜇𝛾5

(
1

𝑛 · 𝜕𝜓
)

Consider the path integral, where 𝑆 is the action (1) with 𝐴𝜇 = 0

𝑍 =

∫
D𝜓D𝜓̄𝑒𝑖𝑆 𝑗 𝛼5(𝑦) 𝑗𝛽 (𝑧)

Make the following local transformations

𝛿𝜓(𝑥) = 𝑖𝛼(𝑥)𝜓(𝑥); 𝛿𝜓̄(𝑥) = −𝑖𝛼(𝑥)𝜓̄(𝑥)

The integration measure is invariant under this transformation.
We get the following Ward identity:

𝜕𝑥
𝜇 < 0|𝑇 ( 𝑗 𝜇 (𝑥) 𝑗 𝛼5(𝑦) 𝑗𝛽 (𝑧)) |0 > − < 0|𝑇𝛿𝑥 𝑗 𝛼5(𝑦) 𝑗𝛽 (𝑧)) |0 > − < 0|𝑇 ( 𝑗 𝛼5(𝑦)𝛿𝑥 𝑗𝛽 (𝑧)) |0 >= 0 (30)

where:

𝛿𝑥 𝑗
𝜇 (𝑦) = 1

2
𝑚2𝑛𝜇

[
𝜓̄ ̸ 𝑛(𝑛 · 𝜕)−1(𝑛 · 𝜕)−1𝜓𝛿(𝑥 − 𝑦) + 𝜓̄ ̸ 𝑛(𝑛 · 𝜕)−1𝜓(𝑛 · 𝜕)−1𝛿(𝑥 − 𝑦)−

((𝑛 · 𝜕)−1(𝑛 · 𝜕)−1𝜓̄) ̸ 𝑛𝜓𝛿(𝑥 − 𝑦) − ((𝑛 · 𝜕)−1𝜓̄) ̸ 𝑛𝜓(𝑛 · 𝜕)−1𝛿(𝑥 − 𝑦]

𝛿𝑥 𝑗
𝜇5(𝑦) = 1

2
𝑚2𝑛𝜇

[
𝜓̄ ̸ 𝑛𝛾5(𝑛 · 𝜕)−1(𝑛 · 𝜕)−1𝜓𝛿(𝑥 − 𝑦) + 𝜓̄ ̸ 𝑛𝛾5(𝑛 · 𝜕)−1𝜓(𝑛 · 𝜕)−1𝛿(𝑥 − 𝑦)−

((𝑛 · 𝜕)−1(𝑛 · 𝜕)−1𝜓̄) ̸ 𝑛𝛾5𝜓𝛿(𝑥 − 𝑦) − ((𝑛 · 𝜕)−1𝜓̄) ̸ 𝑛𝛾5𝜓(𝑛 · 𝜕)−1𝛿(𝑥 − 𝑦]

The non-locality of the action and currents modify the SD identity for the triangle graph. It is
easy to check that the graphs in Figure 3 satisfy (30) if shifting of the loop integration variable is
allowed.

Notice that (30) is not given by the addition of the graphs in Figure 1 of [22].
In a similar way we can derive the Ward identity for the divergence of the axial vector current.

9. Conclusions

We have reexamined the appearance of axial anomalies in VSR electrodynamics, using Pauli-
Villars and dimensional regularization of ultraviolet divergences and Mandelstam-Leibbrandt reg-
ularization of infrared divergences.

Since ML preserves naive power counting in loop integrals, we have verified that the usual form
for the anomaly of the axial current appears, without corrections from VSR terms. No anomaly is

14
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present in the vector current conservation. This computation is at variance from a previous result
for the axial anomaly in two dimensions [20],where corrections from VSR terms were found. This
difference may be due to different normalization conditions for the anomaly term[28] or some extra
freedom that occurs when Lorentz invariance is violated[29]. In any case, our result implies that
the procedure of [20] destroys the naive power counting of loop integrals.

The anomaly is produced because the loop integral is ultraviolet (UV) divergent, so a regulator
must be introduced. To fix the renormalized quantities we must impose normalization conditions
(Please see [28], chapter 13.1). These normalization conditions reflects the symmetries to be
satisfied by the model. Different regulators may produce correspondingly different normalization
conditions and therefore the anomaly could appear in the vector current, axial vector current or in a
combination of both(This is important for a chiral theory like the SM). See for example [31] where
a regulator is able to interpolate between different forms of the anomaly.

In this work we are reviewing a theory that has infrared(IR) divergences as well. So a new
ambiguity in the value of the loop integral appears. The result depends on the IR regulator we
choose. Beside the normalization conditions on the renormalized quantities are different, because
we have a new fixed vector 𝑛𝜇 and non-local terms are allowed.

The results contained in [20] and in [24] correspond to different normalization conditions. In
this sense, both results are right. But naive power counting of loop integrals is such an important
tool in Quantum Field Theory that the normalization conditions of the present paper should be
preferred.

In four dimension we find a completely different result compared to [22]. They claim that
the conservation for the vector current has an anomaly and VSR corrections should appear in the
anomaly of the axial current. We notice also that Figure 5,6 are lacking in the computation of both
anomalies in [22]. Figure 5,6 are crucial to satisfy the Ward identity for the vector current as a
procedure in 4d similar to the one explained in Appendix B shows.

In chapter VIII we derived the Ward identity for the product of two vectors and one axial vector
current in VSR. The non-locality of the model introduces new contact terms.

We study also the axial anomaly from the point of view of the path integral method. Again
ML property of preserving scaling(naive power counting) permits to show that the axial anomaly
is the Lorentz invariant one, without corrections from VSR.

Using Dimensional(or PV)regularization of UV divergences and ML regularization of IR
divergences ensues the VSRSM must be free from local chiral anomalies, since the same anomalies
as in the SM are obtained , so the usual mechanism of cancellation of anomalies within families of
leptons and quarks should work.

Lastly we recall that 𝑀 is not the mass of the particle. So if the fermion acquires a VSR mass
𝑚 even if 𝑀 = 0, the divergence of the axial current will contain the anomalous term only.
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Appendix A:Feynman rules

Figure 7: Electron propagator

Figure 8: 𝑒 − 𝑒 − 𝐴𝜇 vertex
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Figure 9: 𝑒 − 𝑒 − 𝐴𝜇 − 𝐴𝜈 vertex

Figure 10: axial-e-e vertex

Figure 11: 𝑎𝑥𝑖𝑎𝑙 − 𝐴𝜈 − 𝑒 − 𝑒 vertex

Figure 12: axial−𝐴𝛼2 − 𝐴𝛼3 − 𝑒 − 𝑒 vertex

𝑉 (𝑝1, 𝑝2, 𝑝3, 𝑞) = 𝑖(𝑖𝑒)3𝑚
2

2 /𝑛𝑛𝛼1𝑛𝛼2𝑛𝛼3
1

𝑛.(𝑞 + 𝑝1 + 𝑝2 + 𝑝3)

( 1
𝑛.(𝑞 + 𝑝1 + 𝑝2)

1
𝑛.(𝑞 + 𝑝1)

+ 1
𝑛.(𝑞 + 𝑝1 + 𝑝2)

1
𝑛.(𝑞 + 𝑝2)

+

1
𝑛.(𝑞 + 𝑝3 + 𝑝2)

1
𝑛.(𝑞 + 𝑝3)

+ 1
𝑛.(𝑞 + 𝑝1 + 𝑝3)

1
𝑛.(𝑞 + 𝑝1)

+

1
𝑛.(𝑞 + 𝑝2 + 𝑝3)

1
𝑛.(𝑞 + 𝑝2)

+ 1
𝑛.(𝑞 + 𝑝3 + 𝑝1)

1
𝑛.(𝑞 + 𝑝3)

)𝛾5
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Appendix B:Formal proof of the Ward identities in 2d

In this appendix we want to show in some detail how to obtain the Ward identities in 2d. In 4d
we have more graphs, but the procedure is essentially the same.

𝑞𝜇Π
15𝜇𝜈 = −(−𝑖𝑒)2

∫
𝑑𝑝 Tr{

[
/𝑞 + 1

2
𝑛.𝑞 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

] 𝑖 (/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀[

𝛾𝜈 + 1
2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝛾5

𝑖

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

}

Now we use the identity: [
/𝑞 + 1

2
𝑛.𝑞 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
=[

/𝑝 + /𝑞 − 1
2 /𝑛𝑚

2(𝑛.(𝑝 + 𝑞))−1 − 𝑀 −
(
/𝑝 − 𝑚2/𝑛

2𝑛.𝑝
− 𝑀

)]
(31)

and the cyclic property of the trace to get:

𝑞𝜇Π
15𝜇𝜈 = (−𝑖𝑒)2

∫
𝑑𝑝 Tr{

(
/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

[
𝛾𝜈 + 1

2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝛾5 −[

𝛾𝜈 + 1
2
𝑛𝜈 (/𝑛) 𝑚2(𝑛.(𝑝 + 𝑞))−1(𝑛.𝑝)−1

]
𝛾5

( (
/𝑝 + /𝑞

)
+ 𝑀 − 𝑚2

2
/𝑛

𝑛· (𝑝+𝑞)

)
(𝑝 + 𝑞)2 − 𝑀2 − 𝑚2 + 𝑖𝜀

} (32)

Besides:

𝑞𝜇Π
25𝜇𝜈 =

2(𝑖𝑒)2𝑛.𝑞𝑛𝜈
∫

𝑑𝑝(𝑛.𝑝)−1 [(𝑛.(𝑞 + 𝑝))−1(𝑛.(−𝑞 + 𝑝))−1] Tr
1
2 /𝑛𝑚

2

(
/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5

In the second term of(32) shift 𝑝 → 𝑝 − 𝑞 to get: 2

𝑞𝜇Π
15𝜇𝜈 =

−(−𝑖𝑒)2
∫

𝑑𝑝 Tr


1
2
𝑛𝜈 (/𝑛) 𝑚2

(
/𝑝 + 𝑀 − 𝑚2

2
/𝑛

𝑛·𝑝

)
𝑝2 − 𝑀2 − 𝑚2 + 𝑖𝜀

𝛾5(𝑛.𝑝)−1(−2𝑛.𝑞) [(𝑛.(𝑝 + 𝑞))−1(𝑛.(𝑝 − 𝑞))−1]


That is Π𝜇𝜈 = Π1𝜇𝜈 + Π2𝜇𝜈 is transverse.
The axial Ward identity is obtained in the same way.

2This is justified if we use DR as in chapter V and VI.
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