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1. Introduction

Providing a microscopic description of classical gravitational systems without supersymmetry
is a central challange for the developement of theoretical high-energy physics. Even if it is a well-
known fact that supersymmetry constitutes a sufficient condition for non-perturbative stability [3],
the need of a deep understanding of the dynamical supersymmetry breaking mechanism has been
manifest since the beginning of research in string theory. This need is of course motivated by the
demand of building up phenomenological models that, on one hand, are UV-complete and, on the
other hand, can be used to explain experimental evidences.

Despite the huge effort in the last decades in costructing non-supersymmetric setups in string
theory, in the last few years the formulation of Swampland Conjectures radically questioned their
reliability as consistent solutions in a quantum theory of gravity (see [4] for a review of this
topic). This approach has been originally motivated by the insights coming from the Weak Gravity
Conjecture [5]. Among the various implications of this conjecture one of the sharpest is concerning
non-supersymmetric AdS vacua and their expected non-perturbative instability [6, 7]. This should
be realized by a spontanueous nucleation of branes whose emergence completely discharges the
flux that supports the vacuum.

Metastable spacetimes and their non-perturbative decays have been object of study for a long
time, independently from string theory (see for example [8, 9]). The standard approach makes use
of the semi-classical approximation to construct gravitational instantons. In this perspective the
decay of a spacetime can be viewed as a quantum process of nucleation of a bubble that expands
and eventually eats up the original background in a finite time.

Implementing such time-dependent processes in string theory constitutes an extremely compli-
cated challange. The reasons of this are essentialy two. The first is technical since solving the field
equations in supergravity without SUSY requires completely different strategies with respect to
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supersymmetric cases. The second complication is related to the physical interpretation of instan-
tonic geometries in terms of fundamental quantum objects of the string spectrum. This contribution
follows this research trajectory and it is focused on non-perturbative decays of AdS vacua through
the nucleation of bubbles of nothing. In particular the main purpose of this article is to review the
ideas and results of [1] and [2].

The decay into bubbles of nothing has been firstly studied in [10], where the (in)stability of
the KK vacuum in five dimensions was considered. A part this original analysis there are no many
examples in the string theory literature of these particular decays. Of particular interest are the
two recent works [11] and [12]. In the first one a fully-backreacted solution describing a bubble of
nothing in a AdS5 vacuum in M-theory is constructed and, in the second, the authors study these
particular instantonic geometries in the context of a Einstein dilaton Gauss-Bonnet model related
to heterotic compactifications.

The first article we review in this contribution is focused on decays of AdS spacetimes into
bubbles of nothing in the context of General Relativity in arbitrary dimensions and with a cosmo-
logical constant [1]. Even if the results of this paper are not related in principle with any stringy
embedding, they allow to identify some crucial properties of these istantonic geometries for AdS
vacua. In particular the original idea of [10] consisting in obtaining the bubble geometry through
a double analytic continuation of non-extremal black holes can be applied for a broader class of
situations, including a negative cosmological constant and possibly also fluxes. It follows that the
presence of a de Sitter foliation characterizing the bubble geometry turns out to be crucial in repro-
ducing the Lorentzian picture of the decay. This is reasonable since the intrinsic time-dependence
of de Sitter is the key property allowing to geometrize the surface of an expanding bubble within a
higher-dimensional spacetime.

In the second paper reviewed [2] the aforementioned ideas are applied to a non-supersymmetric
G2-invariant AdS4 vacuum obtained in a consistent truncation of massive IIA supergravity around
a S6 [13–16]. This particular AdS4 vacuum raised many interests since it has been shown to be
perturbatively stable [17] and also protected against brane-jet instabilities [18]. This situation is
clearly harder to study with respect to the aforementioned case of bubble geometries in GR with
a cosmological constant. The equations of motion for the bubble geometry can be solved only
with numerical methods and a singular behavior arises requiring an extra effort in interpreting the
divergence in terms of brane sources.

A source of inspiration for this anlaysis is the work [19] where the authors study the decay of
AdS5 × S5/Zk vacua in Type IIB string theory. This non-perturbative process is discussed through
various classical regimes that are glued each others by suitable junction conditions. The bubble of
nothing geometry turns out to represent an intermediate regime connecting the vacuumwith a phase
emerging at short distances where the geometry is dominated by a singular behavior associated to
istantonic D3 branes.

In [2] an analogous approach is applied to the case of G2-invariant AdS4 vacuum in massive
IIA which is also featured by a Freund-Rubin filling flux. The fully-backreacted bubble solution
connected to the aforementioned vacuum is worked out numerically and then it is studied by
connecting approximated regimes. Crucially a dS3 foliation characterizes the whole radial flow that
asymptotically reproduces the vacuum geometry and a singular behavior at short radial distances.
This divergent behavior is well-approximated by the geometry of a smeared D2 brane wrapping
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the dS3. Crucially an intermediate bubble regime arises interpolating between the vacuum and
the D2 source. In this phase the flux contribution is sub-dominant (including Romans’ mass) with
respect to the contribution coming from the bubble’s curvature and a very similar behavior of a
bubble of nothing can be recovered. In particular from a 4d perspective the bubble is spontaneously
created as a standard bubble of nothing and, corresponding to the initial position of the bubble,
a four-dimensional modulus shrinks to zero. Crucially this modulus does not have a geometric
interpretation in relation to any cycle within the geometry, but instead to the string coupling.

2. Bubbles of nothing in gravity theories

A predictive framework in studying quantum instabilities of a gravitational system is provided
by the semi-classical approximation. In this approach the non-perturbative decay of a gravity
vacuum is described in terms of a quantum tunnelling process driven by a gravitational instanton.
Intuitively, the instantonic geometry gives the “classical picture" of a process of nucleation of a
bubble that appears spontaneously within an unstable background and expands following a time-
dependent dynamics.

A gravitational instanton can be defined as a real and smooth solution of the Euclidean equations
of motions approaching the putative vacuum in their asymptotics and characterized by a finite value
of the Euclidean action SE |inst . This last property automatically implies that the instanton gives
a non-trivial contribution to the path integral in terms of an imaginary part to the energy of the
vacuum. This allows to define the decay probability per volume of spacetime as [8]

Γ/V ∼ e−∆SE , (1)

with ∆SE = SE |inst − SE |vac.
In this section we firstly summarize the results of [10] where the non-perturbative instability

of the Kaluza-Klein vacuum in five-dimensional General Relativity is discussed by using the semi-
classical approximation. After having introduced and discussed the non-perturbative decay of the
KK vacuum into bubbles of nothing, we summarize themain results of [1] where the aforementioned
5d bubble geometry is extended to General Relativity in arbitrary dimensions and with a negative
cosmological constant. In particular we present the analytic form of gravitational instantons for
AdS vacua and the change in the euclidean action corresponding to these instantons.

2.1 The case of the KK vacuum

Wondering about the stability of the KK vacuum R1,3 × S1 is somehow natural since it is a
zero-energy spacetime, but with different asymptotic behaviour of the Minkowski vacuum. For the
latter one, the positive energy theorem [20–22] ensures the full stability, but the explicit dependence
of the energy on the boundary conditions does not allow a direct comparison between theMinkowski
and the KK vacua. In other words we need to take in consideration the KK vacuum by itself and
search for istantons describing its decay. The idea in [10] is to construct instantons for the KK
vacuum by considering non-extremal black holes in 5d and applying a double analytic continuation.
The simplest example is provided by the 5d Schwarzschild black hole,

ds2 = −

(
1 −

R
ρ2

)
dt2 +

dρ2(
1 − R

ρ2

) + ρ2ds2
S3 . (2)
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By Wick-rotating the time coordinate t → iφ it is possible to obtain the Euclidean geometry,

ds2
5,E =

(
1 −

R
ρ2

)
dφ2 +

dρ2(
1 − R

ρ2

) + ρ2ds2
S3 . (3)

The above geometry is well-defined and non-singular in the interval ρ ∈ (R,+∞) if and only if the
coordinate φ is periodic as φ ∼ φ + 2πR. It is easy to show that for ρ → +∞, the solution (3)
describes the Euclidean KK vacuum in spherical coordinates, i.e.

ds2
5,KKE = dφ2 + dρ2 + ρ2ds2

S3 , (4)

where we identified the KK radius `KK with the period of the compact direction of (3), i.e. R = `KK
[10]. It turns out that the Euclidean solution (3) consitutes an instanton for the KK vacuum, in fact
the derivation of the Euclidean action leads to a finite result,

∆SE =
πR2

4 G(4)
N

. (5)

We point out that since we are in the semi-classical approximation, this result holds only for values
of R that are bigger than the Planck length `Pl. This means that the probability of decay is small,
but still different from zero.

Let’s now study the spacetime in which the KK vacuum decays. To this aim we need to rotate
back the Euclidean solution (3) onto the Lorentzian. This time the analytic continuation has to be
performed within the S3 in order to keep intact the asymptotic structure of the KK vacuum (4).
More concretely, if we parametrize the S3 as ds2

S3 = dθ2 + sin2 θ ds2
S2 , we can introduce a new time

coordinate ψ such that θ → iψ + π
2 . In this way ds2

S3 → ds2
dS3
= −dψ2 + cosh2 ψ ds2

S2 and the
Euclidean metric (3) takes the form [10]

ds2
5 =

*
,
1 −

(
R
ρ

)2
+
-

dφ2 +
dρ2

1 −
(
R
ρ

)2 + ρ
2ds2

dS3
. (6)

The background described by (6) is non-singular and geodesically complete for ρ ∈ (R,+∞).
It is easy to verify that for ρ → +∞ we recover the KK vacuum with the coordinates (ρ, ψ)

parametrizing a 2d Rindler spacetime [10]. In other words the coordinates (ρ, ψ) do not cover
the whole 2d Minkowski spacetime, but only the exterior of the light cone. This can be easly
seen since, in the limit ρ → +∞, the asymptotic background is defined for ρ ∈ (0,+∞) and this
implies that (ρ, ψ) cover only the region x2 − t2 = ρ2 > 0 with x = ρ coshψ and t = ρ sinhψ.
Moving away from the asymptotics, the 2d Rindler spacetime is distorted by the warp factors and the
coordinate ρ is now defined on the interval (R,+∞). The coordinates (ρ, ψ) now parametrize the
region x2 − t2 > R2 on which the 5d background (6) turns out to be non-singular and geodesically
complete. Crucially this is due to the presence of compact KK coordinate φ that shrinks to zero
size at ρ = R in such a way the boundary defined by the hyperbola of radius R is smoothly sealed
off [10].

We can then interpret the spacetime (6) as a bubble expanding in the time ψ whose geometry is
described by a 3d de Sitter manifold dS3. The bubble has only an exterior since by construction the

5



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
7
0

Bubbles of nothing and AdS instabilities Nicolò Petri

metric (6) describes a non-singular geodesically complete spacetime for values of (ρ, ψ) covering
only the external region of the hyperboloid x2 − t2 = R2. For this reason, this quantum instability
of the 5d KK vacuum has been called bubble of nothing in [10].

Since any decay process has to preserve energy, it follows that the spacetime (6) has zero
energy and this means that a positive energy theorem for the KK vacuum does not exist: there exists
a solution with zero energy asymptotically approaching the KK vacuum and this is exactly what
allows the KK vacuum to decay [10]. This fact can be also seen by looking at the surface integral
defining the energy. In particular, taking the zero-time surface at ψ = 0, the asymptotics (6) gives
contributions to the KK vacuum of the order ρ−2 and it can be shown that, for a 4d observer, only
terms of the order ρ−1 give positive contributions to the energy of the vacuum [10].

Finally we point out that in the decay a change of topology occurs since at ψ = 0 the bubble of
nothing is described by the topological space R2 × S2. The change of topology is intimately related
to the fact that the instability has been obtained by a double analitical continuation of a non-extremal
black hole and it has very interesting consequences when one tries to introduce spinors [10]. In
fact the space R2 × S2 is simply-connected and this implies that there exists a unique spin structure
defined on it. On the other hand the KK vacuum at t = 0, R3 × S1, is not simply-connected and this
implies that the spinors are defined up to a phase α as it follows [10]

ψ(x, φ) =
∑
n

ψn(x) e
i
R (n− α

2π )φ . (7)

It easy to see that the existence of covariantly constant spinors on R3 × S1 imposes α = 0 while
the existence of the spin structure on the S2 requires that α = π, namely anti-periodic boundary
conditions [10]. This consideration implies that the gravitational instanton (3) does not contribute to
the path integral of theories described by covariantly constant spinors. This fact is quite interesting
since it tells us that, with suitable boundary conditions on fermions, we can “cure" the quantum
instability of the KK vacuum and, moreover, it tells us that these boundary conditions correspond
exactly to the requirement of the existence of covariantly constant spinors [10].

2.2 Bubbles of nothing within AdS vacua

It is natural to wonder if the idea and results of [10] can be implemented in the case of vacua
with constant curvature in (D + 1) dimensions [23]. Of course the main difference with respect to
section 2.1 is the inclusion of a negative cosmological constant1 Λ. In addition to this we also allow
the asymptotic region to be described not only by a single sphere but rather a product of them.

Let’s start by discussing the vacuum geometries. The zero-curvature case is described by
a Ricci-flat vacuum solution with zero-energy and extends the 5-dimensional case presented in
[10] to D + 1 dimensions. When Λ is running we will obtain bubble geometries that reproduce
asymptotically locally AdSD+1 vacua written in the form

ds2
D+1 =

(
1 − k ρ2

)
dφ2 +

(
D − 2
d − 1

)
dρ2(

1 − k ρ2) + ρ2
(
L2

dSd
ds2

dSd
+ L2

SD−d−1 ds2
SD−d−1

)
,

k =
2(D − 2)

D(D − 1)(d − 1)
Λ ,

(8)

1A discussion on the case of positive cosmological constant can be found in [1].
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where φ parametrizes the KK circle2 with period 2π`KK. The elements ds2
dSd

and ds2
SD−d−1 describe

respectively a d-dimensional de Sitter geometry and a (D − d − 1)-dimensional sphere with unit
radius. The cosmological constant can be expressed in terms of the Ricci scalar as it follows,

|Λ| =
D(D − 1)

2`2 , R =
2(D + 1)

D − 1
Λ , (9)

with ` radius of AdSD+1. The above solutions represent non-singular and geodesically complete
solutions of Einstein equations Rµν = 2

D−1Λgµν when the conditions

LdSd
= 1, LSD−d−1 = LdSd

√
D − d − 2

d − 1
. (10)

hold3. We point out that the case D = d +1 is particularly interesting. This is the situation in which
the foliation with SD−d−1 is not present. In this case the geometry (8) reproduces the topology of
AdS. When the additional SD−d−1 is present the geometry is only locally AdSD+1.

The peculiar foliation of (8) in terms of dS slicings is crucial in order to reproduce istantonic
bubble geometries. We can continue the geometry (8) to a Euclidean metric and think in analogy
to the 5d case of section 2.1. It is thus possible to show that the asymptotic behavior of (8) can be
reproduced as the ρ → ∞ limit of a Euclidean black hole featured by a product of two spheres at
the horizon [1],

ds2
E,D+1 = f (ρ)dφ2 +

(
D − 2
d − 1

)
dρ2

f (ρ)
+ ρ2

(
ds2

Sd +

(
D − d − 2

d − 1

)
ds2

SD−d−1

)
,

f (ρ) =1 − k ρ2 −

(
R
ρ

)D−2
.

(11)

In the corresponding Lorentzian black hole solution, there is a coordinate singularity at ρ = ρ0,
where f (ρ0) = 0. In order to avoid conical singularities, we need to impose the condition

`2
KK =

4(D − 2)
f ′(ρ0)2(d − 1)

. (12)

This condition leaves the geometry (11) well-defined and non-singular for ρ ∈ (ρ0,+∞).
We point out that that continuing the sphere Sd to dSd produces an instanton geometry

describing an expanding bubble whose surface is given by dSd × SD−d−1 [1],

ds2
D+1 = f (ρ)dφ2 +

(
D − 2
d − 1

)
dρ2

f (ρ)
+ ρ2

(
ds2

dSd
+

(
D − d − 2

d − 1

)
ds2

SD−d−1

)
. (13)

Asymptotically the geometry (13) reproduces the vacuum (8) and the full spacetime background is
defined for ρ ∈ (ρ0,+∞). Thus we obtained an extension of the bubble of nothing that describes
the decay of the vacua (8). We finally point out that in the case of zero-curvature the relation (12)
reduces to [1]

`2
KK =

4R2

(d − 1)(D − 2)
, (14)

where ρ0 = R. The 5d case of [10] can be thus recovered by requirng that D = 4 , d = 3, namely
R = `KK .

2Even if this S1 is not technically compact in the case of AdS, we will still refer to it as a KK circle.
3We point out that we need D , d + 2 and d ≥ 2 for the (D + 1)-dimensional solution to exist.
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2.3 Euclidean action

In this section we derive the change in the Euclidean action for the bubble geometry (13). It is
well known that in order to reproduce Einstein equations we need to include the Gibbons-Hawking-
York (GHY) term describing the boundary contributions that are not fixed by the requirement of
vanishing variations at the boundary. In our particular situation the boundary at infinity and the
instanton geometry of the bubble constitute boundaries where we need to evaluate the GHY action.

The Euclidean action has the following form

SE = SE, bulk + SE, GHY ,

SE, bulk =
1

2κ2
D+1

∫
dD+1xE

√
gD+1 (R − 2Λ) ,

SE, GHY =
1

κ2
D+1

∫
dDyE

√
hD θD ,

(15)

where the coordinates {y} parametrize any D-dimensional boundary of the background, hD is the
induced metric and θD is the trace of the extrinsic curvature of the boundary. Let’s consider the
cases of zero and non-zero curvature separately4.

Zero curvature case: Λ = 0. In this case ∆SE, bulk vanishes, since it turns out to be proportional
to Λ, moreover ρ0 = R. The bounce takes the form [1]

∆S(Λ=0)
E =

π`KK

κ2
D+1

√
d − 1
D − 2

(
D − d − 2

d − 1

) (D−d−1)/2
(D − 2)RD−2 volSdvolSD−d−1 . (16)

In the case D = 4 and d = 3, the S(D−d−1) disappears and the expression boils down to the 5d result
(5). Thi can be seen by using the standard relation defining the Planck masses under dimensional
reduction

1
κ2
D

=
1

8πGD
=

2π`KK
κ2
D+1

. (17)

It is interesting to look at the length scales contributing to this decay rate. We can write [1],

∆S(Λ=0)
E ∼

`KK
`Pl

(
R
`Pl

)D−2
∼

(
R
`Pl

)D−1
, (18)

where we used (14) and ρ0 = R. We thus have a positive bounce that is large whenever the
semiclassical approximation holds and that gives rise to a decay rate exponentially suppressed.

Non-zero curvature case: Λ < 0. In this case we have non-zero contributions both from the
boundary and from the bulk. One obtains the following result [1],

∆S(Λ,0)
E =

π`KK

κ2
D+1

volSdvolSD−d−1

√
d − 1
D − 2

(
D − d − 2

d − 1

) (D−d−1)/2

×
[
(D − 2)RD−2 − 4k ρD0

]
,

(19)

4For a detailed derivation of ∆SE see section 3.1 in [1].
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where it has been used that f (ρ0) = 0. We point out that the second term in the above expression
represents the new contribution proportional to Λ. Looking at the length scales we have that [1]

∆S(Λ,0)
E ∼

`KK
`Pl

*
,

(
R
`Pl

)D−2
+

4
D − 2

(
ρ0
`Pl

)D−2 (
ρ0
`

)2+
-
. (20)

We conclude that the decay rate is exponentially suppressed when the semiclassical approximation
is valid.

3. Bubble instabilities in massive IIA vacua

In this section we approach the study of non-perturbative instabilities of AdS vacua in string
theory by summarizing the main results of [2]. In this work the non-perturbative (in)stability of a
non-supersymmetric AdS4 × S6 vacuum with residual G2-symmetry is studied in the low-energy
framework of massive IIA supergravity.

The main result of [2] consists in the numerical derivation of the fully-backreacted solution
in 10d describing the instability of the aforementioned AdS4 vacuum. This supergravity solution
is then studied in terms of various regimes approximating the phases of the decay process. This
approach takes direct inspiration from the seminal work [19] where the authors study the instabilities
of AdS5×S5/Zk vacua of Type IIB through different approximated regimes associated to the bounce
geometry. In particular, in [19] the authors were able to individuate a discharged regime described
by the typical behavior of an expanding bubble of nothing and a singular regime where the bubble
geometry is modified by the contributions of the F5 flux and a euclidean D3 brane source is driving
the decay.

In [2] a similar analysis allows to individuate a particular regime in which the complete bounce
solution is consistently approximated by an expanding dilaton bubblewithin the AdS4× S6 vacuum.
Then another regime emerges at short distances where a D2 singularity dominates the flow. In this
section we introduce firstly the concept of dilaton bubble [2] as the instanton geometry defining the
bubble regime for the G2-invariant AdS4 vacuum. We thus formulate the 10d Ansatz and we present
the numerical solution of massive IIA supergravity describing the instability of the aforementioned
vacuum. Finally we discuss the various regimes of the decay with particular attention to the
intermediate bubble regime.

3.1 The dilaton bubble

Let’s consider an istantonic geometry reproducing an approximated regime in which the fluxes
and Romans’ mass give a negligible contribution to the stress-energy tensor. To this aim we can
use M-theory as a seed framework where to construct the bubble geometry [2]. In particular we
can consider the embedding of a 5d Schwarzschild black hole in eleven dimensional supergravity
by taking a Ricci-flat manifold M6 as the internal space. The metric is of the form,

ds2
11 = −

*
,
1 −

(
R
ρ

)2
+
-

dτ2 +
dρ2

1 −
(
R
ρ

)2 + ρ2ds2
S3 + ds2

M6
, (21)
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where R is the Schwarzschild radius. As we discussed in section 2 we can obtain a bubble geometry
by performing the double analytic continuation τ → i ψ and S3 → dS3 where ψ is periodic. If
one reduces on S1

ψ, the 10d background takes the form [2]

ds2
10 = H−1/2dρ2 + ρ2H1/2ds2

dS3
+ H1/2ds2

M6
,

eΦ = H3/4 ,
(22)

with H = 1−
(
R
ρ

)2
and ρ ∈ [R,+∞). From the 10d point of view, this geometry has the form of a

Figure 1: The artistic impression of the "dilaton bubble" constructed in [2].

bubble of nothing where instead of a physical cycle within the geometry, it is the string coupling eΦ

that shrinks. In [2] the uniqueness of such a bubble geometry is also discussed and it is shown that
(22) represents the unique background admitting a frame where both dS3 and M6 have a finite size
at the surface of the bubble ρ = R. This frame is represented by the 11d Einstein frame. Taking the
perspective of an observer living within the four-dimensional vacuum, it experiences a bubble of
nothing geometry with radius R which is created at the center of the space and immediately starts
to expand, eventually eating up the entire vacuum (see figure 1). From the 10d point of view, the

Figure 2: The picture of the radial evolution of the bubble geometry taken from [2]. The "dilaton bubble" is
a only an intermediate description. In the asymptotics it reproduces the vacuum geometry. At small distances
it ultimately flows to a smeared D2 brane source.
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bubble geometry has a different origin than the standard bubble of nothing, since the string coupling
rather than an internal cycle shrinks.

As we mentioned at the beginning of this section, our aim is the study of non-perturbative
instability of certain AdS4 vacua obtained from compactifying massive IIA supergravity on a S6.
As we are going to show the aforementioned dilaton bubble solution is a fundamental building block
in the decay process. Such a bubble geometry constitutes only an approximate description in an
intermediate regime when the full geometry of the decay is considered in massive IIA supergravity.
This is due to the presence of extra ingredients that crucially imply new emergent features. In
particular, the presence of AdS4 × S6 vacuum requires a different behavior at large distances and a
non-zero Freund-Rubin flux implies a modified short distance behavior induced by the presence of
smeared D2 brane sources. Furthermore, the non-zero Romans’ mass and the departure from Ricci-
flatness of M6 determine two other complications. Even if these two elements are both fundamental
for the existence vacuum in the asymptotics, in the intermediate phase these ingredients only yield
subleading modifications of the bubble geometry. A representation of the different regimes of the
complete geometry of the instability is given in figure 2.

3.2 Ten-dimensional Ansatz and G2-invariant vacuum

We start our analysis by formulating an Ansatz for solutions in massive IIA describing the
bounce geometry for AdS4 × S6 vacua5. Taking the ispiration from [10] and from our discussion in
section 2, we search for bounce geometries whose 4d external part is represented by a domain wall
with a worldvolume curved by a dS3 geometry. In particular we are interested in the situation where
the domain wall geometry preserves the G2 isometries that act on the 6-sphere as S6 ' G2/SU (3).
The most general 10d background of this type has the form [2]

ds2
10 = e2V (r )

(
dr2 + L2e2A(r )ds2

dS3
+ g−2ds2

S6

)
,

eΦ = eφ(r ) , H3 = dB2 = g−2 b′ dr ∧ J + 3 g−2b ReΩ ,
F0 = m , F2 = F0B2 ,

F4 = f6(r) ? volS6 + f41(r)J ∧ J + f42(r) dr ∧ ImΩ ,

(23)

where m is the Romans’ mass, g is an overall scale for the internal manifold controlling the F6 flux
and L turns out to be related to the radius of AdS4 asymptotic vacuum. The prime denotes the
derivative with respect to the coordinate r .

The real 2-form J and the complex 3-form Ω define the nearly-Kähler structure on S6 (for
more details see appendix B of [2]). In particular the NSNS field strength is defined by the B-field
B2 = g−2 b(r)J and the RR fluxes can be expressed in terms of the functions b(r) and ζ (r) as it
follows

f6 = −
1
g2

(
mb3 + 6gbζ + 5g

)
, f41 =

1
2g4

(
mb2 + 2gζ

)
, f42 =

1
2g3 ζ

′ . (24)

We point out that the pure gauge function in front of the dr2 term in the metric has been chosen in
such a way to describe the space transverse of D2 branes. The reason of this is due to the Freund-
Rubin term F6 = −5g−1 volS6 + · · · hinting a special role of these sources in the backgrounds
captured by the Ansatz (23).

5The analysis can be extended to six-dimensional compact nearly-Kähler manifolds [2].
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The above 10d Ansatz is included in a consistent truncation of massive IIA supergravity on
nearly-Kähler manifolds [14, 24]. From a 4d perspective the physics of (23) is described by five
real scalar fields6 (U, φ, b, ξ, ζ ) with U = V − φ

4 . The geometry takes the form of a curved domain
wall with the form [2]

ds2
4 = e8U (r )

(
dr2 + L2e2A(r )

)
. (25)

This 4d model contains three different AdS4 vacua [14] that can be realized locally by chosing

eA = e−4U0 sinh
( r

e−4U0 L

)
. (26)

We note that the particular foliation of AdS4 we are considering, namely by using dS3 slicing of the
4d spacetime, is obviously crucial in order to study the bounce geometries within the aforementioned
vacua. As we said we are interested in a particular realization of AdS4 without supersymmetry and
preserving the residual symmetry G2, namely7 [13, 14]

e2φ =

√
3

2
, e8U0 =

3
√

3
8

, ζ = −1 , b = −1 , L2 =
3
√

3
4

. (27)

This vacuum has been shown to be perturbatively stable against all the scalar fluctuations of
4d maximal ISO(7) supergravity [16] and also including the full KK spectrum of massive IIA
supergravity [17]. Moreover it has been recently shown that this vacuum is stable against brane-jet
instabilities [18]. For these reasons this particular AdS4 vacuum is of particular interest for our
purposes. In fact it constitutes the ideal stringy setup where we can try to apply the ideas discussed
in section 2 and try to study its non-perturbative (in)stability.

3.3 The decay channel

In order to search for the bounce solution describing the instability of the G2-invariant vacuum
we are forced to use numerical methods. From this perspective the boundary behavior at the end
of the radial flow turns out to be crucial to understand the physical features of the decay. We firstly
point out that the presence of the Freund-Rubin flux filling the S6 induces singular terms into the
equations of motion in the limit where the internal space shrinks. This means that we must include
a source at small distances. This may also be argued from the fact that the absence of a source
would imply a vanishing F6 through the 6-sphere, trivializing our setup. From this it follows that
the inclusion of D2 sources filling dS3 would restore charge conservation in the system.

We can obtain the initial condition for our numerical integration by considering the fluctuations
around the AdS4 vacuum by writing the metric in the usual Fefferman-Graham form and demanding
that only normalizable modes are activated. If one diagonalizes the mass matrix for the G2-invariant
vacuum, the eigenvalues are given by

M2L2 = 6, 6, 20, 20 . (28)

From the the fundamental relation ∆(∆ − 3) = M2 L2 we can obtain the corresponding conformal
dimensions,

∆ =
3 +
√

33
2

,
3 +
√

89
2

, (29)

6The scalar field ξ constitutes a flat direction for the 4d scalar potential [14, 24].
7For simplicity of notation we fixed m = 1 and g = 1

2 .
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each of them with multiplicity 2, namely associated to two-dimensional eigenspaces. We can thus
derive the asymptotic behaviors of our fields U, b, φ, ζ [2],

U = U0 +
4c1 − 3c2

28
z

3+
√

33
2 + c4 z

3+
√

89
2 + . . . ,

b = b0 +
3c2 − 4c1

7
z

3+
√

33
2 +

7c3 + 36c4
12

z
3+
√

89
2 + . . . ,

φ = φ0 + c2 z
3+
√

33
2 − c3 z

3+
√

89
2 + . . . ,

ζ = ζ0 + c1 z
3+
√

33
2 + c3 z

3+
√

89
2 + . . . ,

(30)

where z = e−r/` with ` = e−4U0 L =
√

2 in our conventions. We use the above expression as
initial conditions on the fields for the numerical integration. By construction the four coefficients
ci activate only the normalizable modes and, for any choice of them, one can observe that the flow
always ends up in a smeared D2 brane singularity. Among various choices for the coefficients ci,
one can impose some particular constraints in order to reproduce the bubble geometry (22) as an
intermediate regime of our numerical solution. In particular, let’s focus on the choice

3U −
φ

4
= constant , (31)

implying 3c1 − 4c2 = 0 and c3 + 12c4 = 0. This choice leaves only two independent parameters
that turn out to fix the position of the D2 source rD2 and the radius of the bubble R. The result of
this integration is given in figure 3.

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0

1.5

2.0

2.5

Figure 3: The radial solution describing the instability of the non-SUSY G2-invariant vacuum. The factors
eA+U+

φ
4 and eU+

φ
4 respectively describe the size of dS3 and S6. Plot taken from [2].

This numerical result can be understood by introducing three different regimes: the asymptotic
AdS4 vacuum, a source regime at low distances and an intermediate bubble regime. Starting by
perturbing the AdS vacuum with normalizable modes, the solution depicted in figure 3 exhibits a
regime that can be approximated by the dilaton bubble geometry (22). Such a solution exists only as
an approximated solution in the regime where one can neglet the contributions of fluxes as well as
the curvature of the internal S6. As we discussed in section 3.1 the crucial property of this bubble
geometry is determined by the dilaton that shrinks smoothly at the location of the bubble.
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The presence of Romans’ mass and fluxes implies that the aforementioned bubble regime must
be modified along the flow. In the case of geometry (22) the object that must be included at short
distances is an euclidean D2 brane smeared along the S6. The geometry describing this third phase
has the following form

ds2
10 = H−1/2

D2 ds2
dS3
+ H1/2

D2

(
dr2 + g−2ds2

S6

)
,

eΦ = H1/4
D2 , C3 =

(
H−1

D2 − 1
)

voldS3 ,

with HD2 = QD2(r − rD2) ,

(32)

where QD2 = 5g is fixed by the Page F6 at infinity and rD2 is fixed by the dynamics of the solution.
The expressions (32) constitute an approximated solution like the intermediate bubble regime and
represent a good approximation of our numerical flow in the limit where the curvatures of dS3 and
S6 are negligible.

The three regimes can be glued together consistently by rewriting the bubble regime (22) in a
gauge compatible with the D2 geometry (32). This can be achieved introducing the new coordinate
ρ2 = R2 + (r − rB)2 with rB integration constant associated to the position of the bubble wall8.

Finally, in figures 4, 5 and 6 we plot the numerical solution (blue curves) together with the
three different regimes (we use respectively red, yellow and green curves to plot the AdS4 vacuum,
the D2 source and the intermediate bubble regime).

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: The profile of the factor eA+U+
φ
4 in front of dS3. Plot taken from [2].

8For a more detail analysis on the gluing between the different regimes we refer to [2]
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Figure 5: The radial profile of the factor eU+
φ
4 in front of S6. Plot taken from [2].
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Figure 6: The radial profile of the 10d dilaton eφ . Plot taken from [2].
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