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1. Introduction

Our current understanding of gravity largely relies on Einstein’s theory of General Relativity
(GR), that is a geometric framework in which matter and radiation source spacetime’s curvature. In
its core of assumptions lie Lorentz invariance and locality, which, under the condition that no ghost
degrees of freedom propagate, yield a theory invariant under diffeomorphisms, namely general
coordinate transformations. Alternatively, GR can be viewed as the field theory that uniquely
describes the kinematics of a massless helicity–2 field, the graviton.

A microscopically more fundamental look at the graviton reveals that it also appears as an
on–shell state of closed string spectra. For example, the massless level of the bosonic string is built
out of combinations of string oscillators that give rise to a symmetric and an asymmetric rank–2
tensor, as well as a scalar; the former further enjoys self–interactions that are identical to those of
the GR graviton, as was shown by means of extracting efffective Lagrangians at first from three–
and four–point string amplitudes involving this symmetric state as an external state [1–3].

Despite the fact that GR predictions can account for numerous observational and experimental
data with fine precision, questions such as the enigmas of the cosmological constant, dark matter
(DM) and dark energy, remain unanswered and motivate the investigation of GR extensions. A
promising example of the kind is ghost–free bimetric theory, a theory that involves two distinct
but interacting dynamical rank–2 symmetric tensors [4, 5]. Its structure was inspired by ghost–
free massive gravity [6] and, crucially, it contains all GR solutions as well as, around particular
backgrounds, a massive spin–2 field with features similar to those of DM [7–9]. It is, therefore, a
minimal GR modification that may further shed light on the nature of DM.

In the absence of sources and in four spacetime dimensions, the Lagrangian of ghost–free
bimetric theory is given by [5]

LHR = 𝑚2
𝑔

√
𝑔𝑅(𝑔) + 𝑚2

𝑓

√︁
𝑓 𝑅( 𝑓 ) − 2𝑚2

𝑔𝑚
2
𝑓

√
𝑔𝑉 (𝑆; 𝛽𝑛) , (1)

where 𝑔𝜇𝜈 and 𝑓𝜇𝜈 are the two symmetric rank–2 tensors, with 𝑚𝑔 and 𝑚 𝑓 their respective Planck
masses. Each of the two tensors is namely governed by its own Einstein–Hilbert action and they
further interact via a non–derivative potential that reads

𝑉 (𝑆; 𝛽𝑛) =
4∑︁

𝑛=0
𝛽𝑛𝑒𝑛 (𝑆) , 𝑆

𝜇
𝜈 =

(√︃
𝑔−1 𝑓

)𝜇
𝜈

, (2)

where 𝛽𝑛 are dimensionless, a priori arbitrary, parameters and 𝑒𝑛 elementary symmetric polynomials
of order 𝑛; they involve the trace of the square–root of the matrix (𝑔−1 𝑓 )𝜇𝜈 appearing in various
powers up to the 𝑛–th, as well as traces of products of the square–root in question with itself.

The action corresponding to (1) was motivated by [6], the first construction of a healthy theory
describing a massive graviton around arbitrary backgrounds. In particular, the linear theory of
Fierz–Pauli (FP), describing the five degrees of freedom of a massive graviton propagating in
Minkowski spacetime [10], had long been thought of as lacking a nonlinear extension, as any such
seemed to inevitably excite an additional but unhealthy degree of freedom that renders the (classical)
Hamiltonian unbounded from below, the so–called Boulware–Deser ghost [11]. Nevertheless, it has
been shown that the ghost can be evaded if the mass term has a very specific structure that involves
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elementary symmetric polynomials built out of the square–root of the product of the (inverse) metric
with another, non–dynamical, reference metric [5, 6, 12].

It is this second arbitrary metric that was promoted to a dynamical field, in what has come to
be known as ghost–free bimetric theory. It has also been shown that this theory propagates seven
healthy degrees of freedom around generic backgrounds [4, 13], that do not necessarily split into
those of the massless (2) and of the massive graviton (5), with the exception of maximally symmetric
backgrounds. With the unique structure of 𝑉 (𝑆; 𝛽𝑛) serving as the guarantee of ghost–freedom,
and given that both GR and bimetric theory are non–renormalisable effective field theories, while
string theory accommodates the massless graviton, we wondered: can we extract information on
𝑉 (𝑆; 𝛽𝑛) and its parameters from string scattering amplitudes, the physical observables of string
theory?

To attack this problem, we formulated the following logical plan:

1. the Lagrangian (1) is given in terms of the two full rank–two tensors, that are not well–defined
mass eigenstates. We thus need to treat bimetric theory perturbatively, namely choose suitable
backgrounds for the two tensors and expand (1) around these.

2. The resulting mass eigenstates around the chosen backgrounds have to be appropriately
identified with string states with the same mass and spin properties in four dimensions.

3. States belonging to string spectra are by construction on–shell and we only consider on-shell
string amplitudes. Consequently, the on–shell conditions reflecting the properties of the
chosen string states have to be imposed on the bimetric expansion.

4. With the first nontrivial interactions in the bimetric expansion being cubic vertices, we can
compute three–point amplitudes with the chosen string states as asymptotic states, extract the
corresponding effective actions and compare them with the bimetric expansion.

In the present proceedings material, we will review our recent original published work [14] on
the matter, to which we refer the reader for further technical details.

2. The bimetric expansion

Among the solutions of bimetric theory, of particular importance are the proportional back-
grounds, namely those for which the background values of the two rank–2 tensors are proportional
to each other [4, 15]. For simplicity, we choose the subclass of Minkowski backgrounds for the two
tensors, namely expand the fields as

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝛿𝑔𝜇𝜈 , 𝑓𝜇𝜈 = 𝜂𝜇𝜈 + 𝛿 𝑓𝜇𝜈 . (3)

It can then be shown that the mass matrix of (1) can be diagonalised around these backgrounds,
with the two mass eigenstates being

𝐺𝜇𝜈 ≡ 𝑚𝑔 (𝛿𝑔𝜇𝜈 + 𝛼2𝛿 𝑓𝜇𝜈) , 𝑀𝜇𝜈 ≡ 𝛼𝑚𝑔 (𝛿 𝑓𝜇𝜈 − 𝛿𝑔𝜇𝜈) , (4)
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where 𝛼 ≡ 𝑚 𝑓 /𝑚𝑔. In particular, at order quadratic in the fields, (1) contains the following set of
terms

L (2) (𝐺) = 1
2𝐺

𝜇𝜈 Ê𝜌𝜎
𝜇𝜈 𝐺𝜌𝜎

L (2) (𝑀) = 1
2𝑀

𝜇𝜈 Ê𝜌𝜎
𝜇𝜈 𝑀𝜌𝜎 − 𝑚2

FP
4

(
[𝑀2] − [𝑀]2) , (5)

where Ê𝜌𝜎
𝜇𝜈 is the Lichnerowicz operator that arises from the linearisation of the Einstein–Hilbert

action around Minkowski and which contains two–derivative terms. Brackets denote the trace of
the respective field.

At quadratic order, ghost–free bimetric theory namely propagates the standard massless gravi-
ton of GR, denoted by 𝐺𝜇𝜈 , as well as a massive spin–2 field, 𝑀𝜇𝜈 , whose kinematics are identical
to those of the GR graviton and whose mass is given by [4, 15].

𝑚2
FP ≡ 𝑚2

𝑔 (1 + 𝛼2) (𝛽1 + 2𝛽2 + 𝛽3) . (6)

The Lagrangian of 𝑀𝜇𝜈 is thus that of FP, as should the case be, given that the latter is the unique
ghost–free Lagrangian for a massive graviton propagating in Minkowski spacetime. Notice that we
have here the explicit split of the total seven physical degrees of freedom into two and five. Upon
considering matter couplings, it can be shown that 𝑀𝜇𝜈 interacts with the graviton but very weakly
so with matter (at least for a large region of the parameter space of bimetric theory); it is precisely
because of this feature of the massive spin–2 that it has been put forward as a viable DM candidate
[7–9].

At order cubic in the fields, (1) contains various kinds of vertices, with and without derivatives.
For example, the terms involving one massless graviton and two massive spin–2 fields are [8]

LGM2 =
𝑚Pl
8 (𝛽1 + 2𝛽2 + 𝛽3)

[
[𝐺] [𝑀]2 − 4[𝑀] [𝐺𝑀] − [𝐺] [𝑀2] + 4[𝐺𝑀2]

]
+ 1

4𝑚Pl

[
𝐺𝜇𝜈

(
𝜕𝜇𝑀𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 𝜕𝜇 [𝑀]𝜕𝜈 [𝑀] + 2𝜕𝜈 [𝑀]𝜕𝜌𝑀𝜌
𝜇

+2𝜕𝜈𝑀𝜌
𝜇𝜕𝜌 [𝑀] − 2𝜕𝜌 [𝑀]𝜕𝜌𝑀𝜇𝜈 + 2𝜕𝜌𝑀𝜇𝜈𝜕𝜎𝑀

𝜌𝜎 − 4𝜕𝜈𝑀𝜌𝜎𝜕
𝜎𝑀

𝜌
𝜇

−2𝜕𝜌𝑀𝜈𝜎𝜕
𝜎𝑀

𝜌
𝜇 + 2𝜕𝜎𝑀𝜈𝜌𝜕

𝜎𝑀
𝜌
𝜇

)
+ 1

2 [𝐺]
(
𝜕𝜌 [𝑀]𝜕𝜌 [𝑀]

−𝜕𝜌𝑀𝜇𝜈𝜕
𝜌𝑀𝜇𝜈 − 2𝜕𝜌 [𝑀]𝜕𝜇𝑀𝜇𝜌 + 2𝜕𝜌𝑀𝜇𝜈𝜕

𝜈𝑀𝜇𝜌
) ]

+ 1
2𝑚Pl

[
𝑀𝜇𝜈

(
𝜕𝜇𝐺𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 𝜕𝜇 [𝐺]𝜕𝜈 [𝑀] + 𝜕𝜌𝐺𝜌𝜇𝜕𝜈 [𝑀]
+𝜕𝜈𝐺𝜇𝜌𝜕

𝜌 [𝑀] − 𝜕𝜌𝐺𝜇𝜈𝜕
𝜌 [𝑀] + 𝜕𝜌𝐺

𝜌𝜎𝜕𝜎𝑀𝜇𝜈 − 2𝜕𝜇𝐺𝜌𝜎𝜕𝜎𝑀𝜈𝜌

+𝜕𝜇 [𝐺]𝜕𝜌𝑀𝜌𝜈 + 𝜕𝜌𝐺𝜇𝜈𝜕
𝜎𝑀𝜌𝜎 − 2𝜕𝜌𝐺𝜇𝜎𝜕𝜈𝑀

𝜌𝜎 − 2𝜕𝜌𝐺𝜇𝜎𝜕
𝜎𝑀𝜈𝜌

+2𝜕𝜌𝐺𝜇𝜎𝜕𝜌𝑀
𝜎
𝜈 + 𝜕𝜌 [𝐺]𝜕𝜈𝑀𝜇𝜌 − 𝜕𝜌 [𝐺]𝜕𝜌𝑀𝜇𝜈

)
+ 1

2 [𝑀]
(
𝜕𝜌 [𝐺]𝜕𝜌 [𝑀]

−𝜕𝜌𝐺𝜇𝜈𝜕
𝜌𝑀𝜇𝜈 − 𝜕𝜌 [𝐺]𝜕𝜎𝑀𝜌𝜎 − 𝜕𝜌𝐺

𝜌𝜎𝜕𝜎 [𝑀] + 2𝜕𝜌𝐺𝜇𝜈𝜕
𝜈𝑀𝜇𝜌

) ]
,

(7)

where 𝑚2
Pl ≡ 𝑚2

𝑔 (1 + 𝛼2) . In regard to the structure of the vertices, let us emphasise that the
two–derivative self–interactions of 𝐺𝜇𝜈 and 𝑀𝜇𝜈 are identical and due to the linearisation of the
Einstein–Hilbert action around Minkowski, while, unlike 𝐺𝜇𝜈 , 𝑀𝜇𝜈 further enjoys non–derivative
self–interactions that can be traced back to the bimetric potential. 𝐺𝜇𝜈 can thus be identified with
the GR graviton also at cubic level and it is clear that the expansion respects the theorem according
to which the allowed self–interactions of the graviton are strictly of the Einstein–Hilbert kind [16].
Let us also highlight that no terms involving two gravitons and one massive spin–2 field appear
at cubic order; the absence of such interactions can be thought of as a discriminating feature of
ghost–free bimetric theory opposite other theories involving two metrics [8].
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As previously explained, the string states we consider and, therefore, the string amplitudes we
have computed, are on–shell. For the case of on–shell states corresponding to symmetric rank–2
tensors, this means that the respective masses are on–shell and the polarisation tensors transverse
and traceless. Consequently, these conditions have to be considered in position space and imposed
on the field theory side; for the two mass eigenstates in the bimetric expansion around Minkowski,
they thus take the form

�𝐺𝜇𝜈 = 0 , 𝜕𝜇𝐺𝜇𝜈 = 0 , [𝐺] = 0
(� − 𝑚2

FP)𝑀𝜇𝜈 = 0 , 𝜕𝜇𝑀𝜇𝜈 = 0 , [𝑀] = 0 .
(8)

These are namely nothing other than the massless and massive versions of the Klein–Gordon
equation for transverse and traceless spin–2 fields. To facilitate the comparison between the
bimetric expansion and effective actions extracted from on–shell string amplitudes, we thus have to
impose (8) in the former. Employing partial integrations, the totality of the cubic vertices surviving
then these constraints is [14]

LG3 = 1
𝑚𝑔

√
1+𝛼2 𝐺

𝜇𝜈
(
𝜕𝜇𝐺𝜌𝜎𝜕𝜈𝐺

𝜌𝜎 − 2𝜕𝜈𝐺𝜌𝜎𝜕
𝜎𝐺

𝜌
𝜇

)
LGM2 = 1

𝑚𝑔

√
1+𝛼2

[
𝐺𝜇𝜈

(
𝜕𝜇𝑀𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 4𝜕𝜈𝑀𝜌𝜎𝜕
𝜎𝑀

𝜌
𝜇

)
+2𝑀𝜇𝜈

(
𝜕𝜇𝐺𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 𝜕𝜌𝐺𝜇𝜎𝜕𝜈𝑀
𝜌𝜎

) ]
LM3 =

(−𝛽1+𝛽3) (1+𝛼2)3/2𝑚𝑔

6 𝛼
[𝑀3]

+ (1−𝛼2)
𝑚𝑔𝛼

√
1+𝛼2 𝑀

𝜇𝜈
(
𝜕𝜇𝑀𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 2𝜕𝜈𝑀𝜌𝜎𝜕
𝜎𝑀

𝜌
𝜇

)
.

(9)

What is crucial to observe here is that the terms given in (9) are, up to partial integrations, all
possible Lorentz invariant terms at cubic order in transverse and traceless symmetric rank–2 tensors
that can be written, excluding interactions involving two gravitons and one massive spin–2 field.
This means that what is unique in (9) is not the structure of vertices, but the precise dependence of
the couplings on the bimetric parameters. It is information on these coefficients that we aimed at
extracting from string theory, which we now turn to.

3. Identification of string states

With the graviton universally identified with a massless state of closed string spectra as previ-
ously explained, the first step is to scan open and closed string spectra of ten–dimensional superstring
theory for a massive spin–2 state. As is well known, string spectra can be thought of as infinite
towers of states of increasing mass and spin, so at first glance it is not obvious which state it would
be most suitable to choose and no argument seems to present itself against either of the two kinds
of spectra. Drawing motivation from [17], where the massive graviton was thought of as being a
brane state, we identified 𝑀𝜇𝜈 with the first massive spin–2 that appears in the open superstring
spectrum and are currently investigating closed string possibilities. With the mass of this string state
being 1/𝛼′, the state identification in question implies the following relation between the bimetric
parameters and the string scale 𝛼′:

𝑚2
𝑔 (1 + 𝛼2) (𝛽1 + 2𝛽2 + 𝛽3)

!
=

1
𝛼′ (10)
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due to (6), whose validity is subject to the result of the amplitudes’ computation [14].
As the massless 𝐺𝜇𝜈 and massive graviton 𝑀𝜇𝜈 are identified with closed and open string

states respectively in our setup, the simplest relevant worldsheet topology is that of a disk. At
tree–level, the master formula [18, 19] for such a scattering amplitude is essentially given by a
suitable integral (over the worldsheet) of the correlator of (normal–ordered) primary conformal
fields of the worldsheet conformal field theory that the string defines. Each of these fields, the
so–called vertex operators [20], is thought of as creating each of the string states that are taken to be
external states of the amplitude. The vertex operators are built using the string coordinates 𝑋𝜇 and
𝜓𝜇, that are spacetime vectors and worldsheet superpartners, and the correlator is evaluated using
their correlators on the disk and Wick’s theorem. To treat divergences of the amplitude associated
with reparametrisation invariance, one also has to to divide the result with the volume 𝑉CKG of the
conformal Killing group before integration.

In the late ’90s, several string amplitudes describing the scattering of massless external states
where computed [21–24], while more recently scattering involving a single massive and several
massless ones was investigated [25]. Our novelty consists in two points:

1. all external states of the amplitudes we have computed are either helicity–2 or spin–2

2. at least two external states are massive .

Interestingly, these considerations significantly complicate both the calculations as well as the
derivation of the respective effective actions.

The vertex operators for the massless and massive spin–2 states we have used are valid in both
ten and four dimensions and are respectively given by (see for example [26])

𝑉
(0,0)
𝐺

(𝑧, 𝑧, 𝜀, 𝑞) = − 2𝑔𝑐
𝛼′ 𝜀𝜇𝜈

[
𝑖𝜕𝑋𝜇 + 𝛼′

2 (𝑞𝜓)𝜓𝜇 (𝑧)
]

×
[
𝑖𝜕𝑋𝜈 + 𝛼′

2 (𝑞𝜓)𝜓𝜈 (𝑧)
]
𝑒𝑖𝑞𝑋 (𝑧,𝑧)

(11)

subject to the on–shell conditions

𝜀𝜇𝜈𝑞
𝜇 = 𝜀𝜇𝜈𝑞

𝜈 = 0 , 𝑞2 = 0 , 𝜀𝜇𝜈 = 𝜀𝜈𝜇 , 𝜀𝜇𝜈𝜂
𝜇𝜈 = 0 (12)

and [27–29]

𝑉
(−1)
𝑀

(𝑥, 𝛼, 𝑘) =
𝑔𝑜

(2𝛼′)1/2𝑇
𝑎 𝑒−𝜙 (𝑥) 𝛼𝜇𝜈 𝑖𝜕𝑋

𝜇 (𝑥)𝜓𝜈 (𝑥) 𝑒𝑖𝑘𝑋 (𝑥)

𝑉
(0)
𝑀

(𝑥, 𝛼, 𝑘) =
𝑔𝑜

(2𝛼′)𝑇
𝑎 𝛼𝜇𝜈

[
𝑖𝜕𝑋𝜇 (𝑥)𝜕𝑋𝜈 (𝑥) − 2𝑖𝛼′𝜕𝜓𝜇 (𝑥)𝜓𝜈 (𝑥)

+2𝛼′ (𝑘𝜓) (𝑥) 𝜓𝜈 (𝑥)𝜕𝑋𝜇 (𝑥)
]
𝑒𝑖𝑘𝑋 (𝑥)

(13)

subject to the on–shell conditions

𝛼𝜇𝜈𝑘
𝜇 = 0 , 𝑘2 = − 1

𝛼′ , 𝛼𝜇𝜈 = 𝛼𝜈𝜇 , 𝛼𝜇𝜈𝜂
𝜇𝜈 = 0 . (14)

In the above, 𝑧 is the worldsheet coordinate and 𝑥 that of its boundary, 𝜀𝜇𝜈 and 𝛼𝜇𝜈 the polarisation
tensors of the two states and 𝑞 and 𝑘 their momenta, 𝑔𝑐 and 𝑔𝑜 the closed and open string coupling
respectively and 𝑇𝑎 the generator of the open string gauge group. A superstring vertex operator
may appear in different ghost “pictures” [20], denoted by the parentheses next to the symbols of
the vertex operators; all such pictures describe the same physical state but several thereof may be
needed in order to cancel the worldsheet background ghost charge, depending on the exact scattering
process.
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4. String scattering

Wa have thus brought the amplitude describing the scattering of one massless and two massive
spin–2 states to the form

A(2, 1) =

∫
R

∫
H+

d𝑥1d𝑥2 d2𝑧

𝑉CKG
〈: 𝑉 (−1)

𝑀
(𝑥1, 𝛼1, 𝑘1) : : 𝑉 (−1)

𝑀
(𝑥2, 𝛼2, 𝑘2) : : 𝑉 (0,0)

𝐺
(𝑧, 𝑧, 𝜀, 𝑞) :〉D2 .

(15)

Moreover, because the brane is superheavy, momentum conservation is relevant only along the
brane directions and takes the form

(𝑘1 + 𝑘2 + 𝑞 ‖)𝜇 = 0 , (16)

where the closed string momentum 𝑞 splits into 𝑞 ‖ along the brane and a transverse component.
Using further the fact that the closed string can be thought of as a copy of two open strings, one may
treat this process as a four–point scattering and define Mandelstam variables, to finally conclude
that there exists a single kinematic invariant, which we take to be

𝑠 = −2 + 2𝛼′𝑘1𝑘2 . (17)

By appropriately treating the worldsheet reparametrisation invariance and performing all con-
tractions, we have brought the full amplitude to the form of an integral over the real line 𝑥 and
grouped the various terms into four sets 𝐴𝑖 for convenience. The formulas are lengthy and we have
given them all explicitly in [14]. Here we only give an example

A4 = 4𝑠 𝛼1
𝜅𝜆
𝛼2
𝜌𝜎𝜀𝜇𝜈𝑔

𝜆𝜎
∞∫

−∞
𝑑𝑥 |𝑥 |𝑠+2(𝑥2 + 1)−𝑠 (𝑥−𝑖) (𝑥+𝑖)

(2𝑥)4

{
𝐴𝜇𝜈𝜅𝜌

+ 𝐵𝜇𝜈𝜅𝜌

(𝑥−𝑖) (𝑥+𝑖) +
𝐶𝜇𝜈𝜅𝜌

(𝑥+𝑖)2 + Δ̃𝜇𝜈𝜅𝜌

(𝑥−𝑖)2 + 𝑖 𝐸
𝜇𝜈𝜅𝜌

𝑥+𝑖 + 𝑖 𝐹
𝜇𝜈𝜅𝜌

𝑥−𝑖

}
,

(18)

where for instance

𝐴𝜇𝜈𝜅𝜌 = − 1
16𝛼

′3 𝑞𝐷𝑞 𝐷𝜇𝜈𝑘 𝜅2 𝑘
𝜌

1 + 1
8𝛼

′2 𝐷𝜇𝜈
(
𝑘
𝜌

1 𝑘
𝜅
2 + 1

4𝑔
𝜅𝜌 𝑞𝐷𝑞

)
− 1

16𝛼
′𝐷𝜇𝜈𝑔𝜅𝜌 , (19)

where 𝐷 is a matrix capturing the properties of the worldsheet boundary. We have computed all
36 kinematic packages such as 𝐴𝜇𝜈𝜅𝜌; they depend on the momenta of the external states, are exact
expressions and we have arranged them in orders of 𝛼′.

After partial fractioning and evaluation of the integrals, we have brought the involved expres-
sions to forms such as

A4 = 1
16 4𝑠

{
2𝐴

√
𝜋2−𝑠𝑠 Γ( 𝑠−1

2 )
Γ( 𝑠

2 +1) − (𝐶 + Δ̃)
√
𝜋2−𝑠Γ( 𝑠−1

2 )
Γ( 𝑠

2 +1)

+(𝐸 − 𝐹) (𝑠−1)
[
Γ( 𝑠−1

2 )
] 2

4Γ(𝑠)

}
,

(20)

where, for example,
𝐸 = 𝛼1

𝜅𝜆
𝛼2
𝜌𝜎𝜀𝜇𝜈 𝑔

𝜆𝜎
[
2𝐸𝜇𝜈𝜅𝜌 + 𝐵𝜇𝜈𝜅𝜌

]
. (21)
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We have namely computed the full amplitude that is valid in both ten and four dimensions and
which schematically takes the form

A𝑖 = K(𝑘1, 𝑘2, 𝑞;𝛼′) × I(𝑠) , (22)

where K(𝑘1, 𝑘2, 𝑞;𝛼′) are objects depending on the momenta of the external states and on 𝛼′

explicitly and I(𝑠) are the values of the integrals, whose dependence on 𝛼′ is obscure.
In a similar fashion, we have computed the amplitude corresponding to the scattering of three

massive spin–2 states; the result is [14]

A(3, 0) =
𝑔𝑜

4𝛼′3 Tr(𝑇𝑎1{𝑇𝑎2 , 𝑇𝑎3})
{
3 (2𝛼′)2 Tr(𝛼1 · 𝛼2 · 𝛼3) + (2𝛼′)3×[

(𝑘1 · 𝛼2 · 𝑘1) (𝛼3 · 𝛼1) + (𝑘2 · 𝛼3 · 𝑘2) (𝛼2 · 𝛼1) + (𝑘3 · 𝛼1 · 𝑘3) (𝛼2 · 𝛼3)

+3 𝑘1 · 𝛼2 · 𝛼1 · 𝛼3 · 𝑘2 + 3 𝑘2 · 𝛼3 · 𝛼2 · 𝛼1 · 𝑘3 + 3 𝑘3 · 𝛼1 · 𝛼3 · 𝛼2 · 𝑘1

]
+(2𝛼′)4

[
(𝑘1 · 𝛼2 · 𝑘1) (𝑘2 · 𝛼3 · 𝛼1 · 𝑘3) + (𝑘2 · 𝛼3 · 𝑘2) (𝑘3 · 𝛼1 · 𝛼2 · 𝑘1)

+(𝑘3 · 𝛼1 · 𝑘3) (𝑘1 · 𝛼2 · 𝛼3 · 𝑘2)
]}

.

(23)

At this point let us recall that the derivative cubic self–interactions of 𝐺𝜇𝜈 and 𝑀𝜇𝜈 are identical
and can be traced back to the linearisation of the Einstein–Hilbert action around Minkowski. This
implies that the two–momenta terms in (23) should be the same as those in the three–graviton
amplitude. However, upon comparing (23) with the universal three–graviton string amplitude
[3, 30–34], we observed a coefficient discrepancy: while the same set of terms appear in both cases,
the coefficients do not match. This is already a sign that the open string state we have used does not
interact as the massive spin–2 of bimetric theory does.

5. Effective actions and comparison

To compare with bimetric theory, we have considered 𝐷𝜇𝜈 = 𝑔𝜇𝜈 and𝑈 (1) as the brane gauge
group and made the following replacements in our results for A(2, 1) and A(3, 0):

𝜀𝜇𝜈 → 𝐺𝜇𝜈 , 𝛼
1,2
𝜇𝜈 → 𝑀𝜇𝜈 , 𝑘𝜇 , 𝑞𝜇 → 𝑖𝜕𝜇 . (24)

Our aim being the extraction of Lagrangians valid at low–energy scales, the standard limit to be
taken at the level of amplitudes is

𝛼′ → 0 . (25)

However, in the case of A(2, 1), the dependence of I(𝑠) on 𝛼′ is given through 𝑠, which contains
the term 𝛼′𝑘1 · 𝑘2: this object becomes of order 1 in the limit (25), since the mass of the external
states is 1/𝛼′. Expanding, therefore, the expressions I(𝑠) in small 𝑠 and substituting via (17) in
the amplitudes’ results cannot yield a meaningful low–energy truncation at an arbitrary order in 𝛼′

[14].
Instead, we have used momentum conservation to expand I(𝑠) in small

𝑠 = −2𝛼′ 𝑘1 · 𝑞 , (26)
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which is well–behaved as it involves the massless closed string momentum; we have obtained [14]

A(2, 1) = 𝑔𝑐

{
− 2 Tr(𝛼1 · 𝛼2) 𝜀𝜇𝜈𝑘𝜇1 𝑘

𝜈
2 + 2(𝜀 · 𝛼2 · 𝛼1)𝜇𝜈𝑘𝜇1 𝑘

𝜈
2

+2(𝜀 · 𝛼1 · 𝛼2)𝜇𝜈𝑘𝜈1 𝑘
𝜇

2 + 2(𝜀 · 𝛼2 · 𝛼1)𝜇𝜈 𝑘𝜇2 𝑞
𝜈 + 2(𝜀 · 𝛼1 · 𝛼2)𝜇𝜈 𝑘𝜇1 𝑞

𝜈

+2 Tr(𝜀 · 𝛼1 · 𝛼2) (𝑘1 · 𝑞) +
[
Tr(𝜀 · 𝛼2)𝛼1

𝜇𝜈 − 2(𝛼1 · 𝜀 · 𝛼2)𝜇𝜈
+Tr(𝜀 · 𝛼1)𝛼2

𝜇𝜈

]
𝑞𝜇𝑞𝜈

}
+ O

(
𝛼′3) .

(27)

Finally, the corresponding effective actions up to second order in 𝛼′ we have extracted (as well
as the universal cubic graviton self–interactions) are given by [14]

Leff
G3 = 𝑔𝑐 𝐺

𝜇𝜈
[
𝜕𝜇𝐺𝜌𝜎𝜕𝜈𝐺

𝜌𝜎 − 2𝜕𝜈𝐺𝜌𝜎𝜕
𝜎𝐺

𝜌
𝜇

]
Leff

GM2 = 𝑔𝑐

[
𝐺𝜇𝜈

(
𝜕𝜇𝑀𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 4𝜕𝜈𝑀𝜌𝜎𝜕
𝜎𝑀

𝜌
𝜇

)
+𝑀𝜇𝜈

(
𝜕𝜇𝐺𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 𝜕𝜌𝐺𝜇𝜎𝜕𝜈𝑀
𝜌𝜎

) ]
Leff

M3 =
𝑔𝑜
𝛼′

{[
𝑀3] + 2𝛼′𝑀𝜇𝜈

[
𝜕𝜇𝑀𝜌𝜎𝜕𝜈𝑀

𝜌𝜎 − 3𝜕𝜈𝑀𝜌𝜎𝜕
𝜎𝑀

𝜌
𝜇

]
+4𝛼′2 𝜕𝜇𝜕𝜈𝑀𝜌𝜎𝜕

𝜌𝑀 𝜅
𝜈 𝜕

𝜎𝑀𝜇𝜅

}
.

(28)

Upon comparing with (9), we have thus observed that, while ghost–free bimetric theory and the
superstring provide the same set of cubic terms for the string states we have used, there appear
mismatches at the level of coefficients in both the mixed and self–interactions. In the case of
the massive spin–2 self–interactions, the numerical discrepancy 2 vs 3 is strikingly reminiscent of
the van Dam, Veltman, Zakharov discontinuity [35, 36], in the form that the latter appears in the
massless limit of the massive spin–2 FP propagator; nevertheless, that is related to the mass term of
the graviton in a straightforward manner, while our own discrepancy is associated with derivative
interactions.

6. Conclusions

In our original published work [14] reviewed in the present proceedings material, we have com-
puted for the first time tree–level string scattering amplitudes describing the interactions of massless
and massive spin–2 string states, as well as showed that is possible to extract the corresponding
low–energy effective actions, despite the fact that the massives states’ mass strongly depends on the
string scale. We have, moreover, showed that massive spin–2 states belonging to the open string
spectrum do not interact at low–energies as the massive spin–2 field of ghost–free bimetric theory
does and we cannot, therefore, extract information on the relation between the bimetric parameters
and the string scale using the chosen open string state for the massive spin–2 field. The reasons as
to why this is the case remain a puzzle, but let us highlight that the conclusion to be drawn is that
graviton derivative interactions are very different from those of brane spin–2 states; the kinematics
of the latter at low energies seem to not respect diffeomorphism invariance, even for the simple
case of the 𝑈 (1) brane gauge group that we have considered. With this in mind, we are currently
investigating the already promising scenario of the massive spin–2 field identified with a bulk string
state, much like the graviton.
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