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1. Introduction

The matter content of the universe is exceptionally well described by quantum theory. Since
matter is coupled to the dynamics of spacetime via the Einstein equations of general relativity,
we can not get around the issue of quantizing gravity as well. The straightforward quatization of
general relativity leads to a non-renormalizable theory and several approaches have been proposed
to circumvent this issue, with various degrees of success, or lack thereof.

However, in all these cases we are led to believe that in the eventually successful quantum
theory of gravity, the continuous spacetime manifold is going to be replaced by some kind of
discrete structure [1]. Some reasons to believe this is the case are the following: Heisenberg
gravitational microscope – where measurement of sufficiently small distances creates a black hole
which hides the result of the experiment, instability of quantum vacuum against creation of black
holes from very energetic fluctuations [2], emergence of spacetime from more fundamental degrees
of freedom in matrix models [3].

One setting where the consequences of such a discrete structure can be studied is the case of
fuzzy spaces – finite mode approximations to compact manifolds, which retain the symmetries of
the original space. Field theories on such spaces are described in terms of matrices and can be
studied analytically [4–15] or numerically [16–28]. The standard approach using the momentum
eigenstates leads to the most important consequence of the fuzzy structure – the UV/IR mixing.
The short distance UV fluctuations leave their imprint in the large distance IR physics of the theory.
At the technical level, the continuum limit of the one-loop quantum effective action of the theory is
non-local and very different from the strictly continuum case.

In this contribution, we summarize a different approach to physics on fuzzy spaces, presented
in [29]. We first construct the string modes in section 2, a basis for the fuzzy functions derived from
the coherent states on the fuzzy sphere. We then express the operators on fuzzy sphere in terms of
these new modes in section and finally in the section 3 we show how this formulation leads to some
new insight into fuzzy field theories.

We will deal only with the fuzzy sphere case [30, 31], but most of what we say naturally
generalizes to any more general setting where the coherent states can be constructed [32, 33].

2. String modes

In this section, we will summarize some preliminary information about the fuzzy sphere and
the coherent states on the fuzzy sphere. We will then construct the string modes, introduce their
properties and use them to construct representation of operators of fuzzy functions.

2.1 Fuzzy sphere

The fuzzy sphere is defined by the following deformation of the usual sphere coordinate
functions

𝑥𝑖𝑥𝑖 = 𝑟2 , 𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖 = 𝑖𝜃𝜀𝑖 𝑗𝑘𝑥𝑘 , 𝑖, 𝑗 , 𝑘 = 1, 2, 3 . (1)

Such 𝑥’s generate a non-commutative algebra and the fuzzy sphere 𝑆2
𝐹

is whatever object has this
as the algebra of functions. The above commutation relations have a straightforward realization in
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the 𝑁 = 2𝑠 + 1 dimensional spin-𝑠 representation of 𝑠𝑢(2)

𝑥𝑖 =
2𝑟

√
𝑁2 − 1

𝐿̂𝑖 , 𝜃 =
2𝑟

√
𝑁2 − 1

∼ 2
𝑁

, 𝑥𝑖𝑥𝑖 =
4𝑟2

𝑁2 − 1
𝑠(𝑠 + 1) = 𝑟2 , (2)

where 𝐿̂𝑖’s are the corresponding generators. The group 𝑆𝑈 (2) still acts on 𝑥𝑖’s – this space enjoys
a full rotational symmetry and this motivates the particular form of the commutation relations (1).
Moreover, in the limit 𝑁 → ∞ we recover the original sphere, as the non-commutativity parameter
𝜃 vanishes. Intuitively, nonzero commutator between a pair of coordinates leads to an inability
of resolving points in arbitrary precision and thus the space is blurred at scales at the order of√
𝜃 ∼ 1/

√
𝑁 .1

Functions on the fuzzy sphere are elements of the algebra generated by (2), which is the 𝑁2

dimensional algebra of 𝑁 × 𝑁 hermitian matrices. We can introduce a basis in this space 𝑇𝑙𝑚,
which respects the structure of the 𝑆𝑈 (2)-module, as follows

𝑀 =

𝑁−1∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝑐𝑙𝑚𝑇𝑙𝑚 . (3)

𝑇𝑙𝑚’s are often referred to as polarization tensors or fuzzy spherical harmonics. Note that this
is reminiscent of an algebra of functions on the regular sphere 𝑆2 cut off at maximal angular
momentum 𝐿 = 𝑁 − 1, which further shows that the large 𝑁 limit is the limit of the regular sphere.
A subtlety is though that such algebra would not be closed under the point-wise multiplication of
functions, which is achieved by the non-commutative matrix multiplication.

2.2 Coherent states

The auxiliary Hilbert space H which the matrices 𝑀 in the previous section acted on has a
natural basis in terms of the spin states |𝑖⟩. We can however come up with a different set of states
that serve the same purpose. For any 𝑥 ∈ 𝑆2 with radius 1, choose some 𝑔𝑥 ∈ 𝑆𝑂 (3) such that
𝑥 = 𝑔𝑥 · 𝑝, where 𝑝 is the north pole on 𝑆2, then define [32]

|𝑥⟩ = 𝑔𝑥 · |𝑠⟩ , 𝑔𝑥 ∈ 𝑆𝑈 (2) , (4)

where |𝑠⟩ is the highest weight state, and call the set of all |𝑥⟩ the coherent states. We will set
the radius of the sphere 𝑟 = 1 for the rest of the text. Such a vector is located around 𝑥, since it
minimizes the uncertainty ∑︁

𝑖

〈
(𝑥𝑖)2〉 − ⟨𝑥𝑖⟩2 ≈ 2

𝑁
, (5)

and is the fuzzy analogue of a point 𝑥. This formula also supports the idea of the coherent states as
objects localized in area with spatial extent ∼ 1/

√
𝑁 . However, the coherent state is not a function

1This is most easily seen around the north pole, where 𝑥3 ∼ 1, but thanks to the symmetry of the space needs to hold
anywhere.
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on 𝑆2
𝐹

, since it is an element of H . The set of all coherent states is over-complete in the sense2

1l =
𝑁

4𝜋

∫
𝑑2𝑥 |𝑥⟩ ⟨𝑥 | , (6)

but states for distinct 𝑥 and 𝑦 are orthogonal only in the large 𝑁 limit

|⟨𝑥 |𝑦⟩|2 =

(
1 + 𝑥 · 𝑦

2

)𝑁−1
. (7)

Coherent states can be used to map (quantize) functions on 𝑆2 on matrices

𝜙(𝑥) → 𝑀 =

∫
𝑑2𝑥 𝜙(𝑥) |𝑥⟩⟨𝑥 | . (8)

and matrices on functions (de-quantize)

𝑀 → 𝜙(𝑥) = ⟨𝑥 | 𝑀 |𝑥⟩ . (9)

The quantization map maps the spherical harmonics 𝑌𝑙𝑚 onto the polarization tensors 𝑇𝑙𝑚, up to a
normalization defined by

𝑇𝑙𝑚 = 𝑐𝑙

∫
𝑑2𝑥 𝑌𝑙𝑚(𝑥) |𝑥⟩ ⟨𝑥 | . (10)

The normalization can be shown to be [29]

𝑐2
𝑙 =

1
4𝜋

(𝑁 − 1 − 𝑙)!(𝑁 + 𝑙)!
((𝑁 − 1)!)2 ∼ 𝑁

4𝜋
𝑒

𝑙2
𝑁 . (11)

Even though this is rather technical, it highlights and important feature of the quantization/de-
quantization maps. For 𝑙 ≪

√
𝑁 the coefficients 𝑐𝑙 are approximately constant, quantization and

de-quantization are inverse of each other and there are no issues. However for 𝑙 >
√
𝑁 the coefficient

𝑐𝑙 grows extremely fast and de-quantized matrices are misleading. This already suggests that some
kind of crossover behaviour is lurking at momenta 𝑙 ≈

√
𝑁 , but let us keep the tension for a little

further and proceed to define the main protagonist of our discussion.

2.3 String modes and their properties

Spin states produce also a natural basis in the algebra of fuzzy functions 𝑀 given simply by
|𝑖⟩ ⟨ 𝑗 |. Similarly, we can express the matrix 𝑀 in using the coherent states

𝑀 =

(
𝑁

4𝜋

)2 ∫
𝑑2𝑥 𝑑2𝑦 𝜙(𝑥, 𝑦) |𝑥⟩ ⟨𝑦 | . (12)

2In expressions like this we use normalization
∫
𝑑2𝑥 = 4𝜋.
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The objects [29, 34, 35]

|𝑥⟩ ⟨𝑦 | =:
���𝑥
𝑦

)
(13)

thus form a natural way for expansion of functions on the fuzzy sphere and we will call them the
string modes. They are over-complete similarly to the coherent states they stem from and we have(

𝑥′

𝑦′

������𝑥
𝑦

)
= tr

(
|𝑦⟩ ⟨𝑥 |′ |𝑥⟩ ⟨𝑦 |

)
= ⟨𝑥 |𝑥 ′⟩ ⟨𝑦 |𝑦′⟩ , (14)

where we denote the trace over H by tr (·), reserving the upper case trace for the operator trace over
End(H). Clearly, such a representation of matrix 𝑀 with a bi-local function 𝜙(𝑥, 𝑦) is not unique.
But it can be shown [29] that the derivatives of 𝜙(𝑥, 𝑦) are bounded from above by

√
𝑁 , which means

that the Fourier modes are restricted by 𝑙𝑥 , 𝑙𝑦 ≤
√
𝑁 . Or in different words, any information that the

function 𝜙(𝑥, 𝑦) tries to carry over to the matrix 𝑀 in (12) at scales 1/
√
𝑁 or shorter gets averaged

over by the finite extent of the coherent states over area ∼ 4𝜋/𝑁 . The functional representations of
matrices now have very mild changes and have no rapid oscillations, but the price we have to pay
is the non-local character of the string modes (13).

We will distinguish between two regimes:

• Short string modes for |𝑥 − 𝑦 | < 1/
√
𝑁 , which are given by two points withing the same

Planck cell of the fuzzy sphere and thus there is no distinction of them from the fuzzy
point of view. It can be shown [29] that such modes correspond to wave packets, localized
around the two points and with momentum ∼ 𝑁 |𝑥 − 𝑦 |. They thus correspond to the standard
commutative field theory degrees of freedom and form the classical regime.

As an extreme example, state with 𝑥 = 𝑦 represents object as localized as is allowed by the
fuzziness of the space and thus is the fuzzy analogue of the 𝛿-function. As a check, we can
expand the matrix |𝑥⟩ ⟨𝑥 | in terms of the basis 𝑇𝑙𝑚 and see that we obtain a cut-off expansion
of 𝛿(𝑥) in terms of the spherical harmonics3.

• Long string modes for |𝑥 − 𝑦 | > 1/
√
𝑁 , which are proper, non-local and non-commutative

objects with no classical analogue. And as we will shortly see, they are the source of all sorts
of troublesome effects.

2.4 Operators in the string modes basis

As we did with the matrices in (12), we can use the string modes to expand the operators
O ∈ End(End(H)) as

O =

(
𝑁

4𝜋

)4 ∫
𝑑2𝑥 𝑑2𝑥 ′ 𝑑2𝑦 𝑑2𝑦′

���𝑥
𝑦

)
O(𝑥, 𝑦; 𝑥 ′, 𝑦′)

(
𝑥′

𝑦′

��� . (15)

3This is again most easily done around the north pole, but thanks to the symmetry of the space needs to hold anywhere.
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Operator traces can be calculated as follows

TrO =

(
𝑁

4𝜋

)2 ∫
𝑑2𝑥 𝑑2𝑦

(
𝑥

𝑦

���O���𝑥
𝑦

)
, (16)

formula which has already led to interesting results in the context of supersymmetric matrix models
[36].

We can insist on a local representation of the operator

O =

(
𝑁

4𝜋

)2 ∫
𝑑2𝑥 𝑑2𝑦

���𝑥
𝑥

)
O𝐿 (𝑥, 𝑦)

(
𝑦

𝑦

��� , (17)

which is essentially the standard integral kernel of an operator. However, when expressed in this way
the general operator will have typically a very oscillatory and ill-behaved representation similarly
to the symbol map (9). And as was the case before, non-local representations are going to behave
much better.

In what follows, we will be primarily interested in the propagator of the field theory (2 + 𝑚2)−1.
In the large 𝑁 limit and in the non-local regime |𝑥 − 𝑦 | > 1/

√
𝑁 it is approximately diagonal

1
2 + 𝑚2 ≈

(
𝑁

4𝜋

)2 ∫
𝑑2𝑥 𝑑2𝑦

���𝑥
𝑦

)
O𝐷

𝑃 (𝑥, 𝑦)
(
𝑥

𝑦

��� , O𝐷
𝑃 (𝑥, 𝑦) =

(
𝑥

𝑦

��� 1
2 + 𝑚2

���𝑥
𝑦

)
(18)

and we can obtain the following formula for a general function of 2(
𝑥

𝑦

��� 𝑓 (2)���𝑥
𝑦

)
=

1
𝑁

∑︁
𝑘,𝑙

(2𝑘 + 1) (2𝑙 + 1) (−1)𝑙+𝑘+2𝑠 𝑓
(
𝑘 (𝑘 + 1)

) { 𝑙 𝑠 𝑠

𝑘 𝑠 𝑠

}
𝑒−𝑙

2/𝑁𝑃𝑙 (cos 𝜗) , (19)

where 𝑃𝑙 are the standard Legendre polynomials and the objects {. . .} are the Wigner 6j-symbols.
This then leads to [29] (

𝑥

𝑦

��� 1
2 + 𝑚2

���𝑥
𝑦

)
≈ 1

𝑁2

4 |𝑥 − 𝑦 |2 + 𝑚2
. (20)

3. Fuzzy field theory in string modes formalism

In this section we will first shortly summarize the construction of fuzzy field theories and then
introduce the main antagonist of our discussion – the UV/IR mixing on the fuzzy sphere. We will
then reformulate the fuzzy scalar field theory in terms of the above defined string modes and show
the consequences this has.

3.1 Fuzzy field theory and UV/IR mixing

To define the fuzzy field theory, we take the standard Euclidean field theory action on the
sphere and use the commutative-to-fuzzy dictionary to translate the quantities to obtain

𝑆(𝑀) = 4𝜋𝑟2

𝑁
tr
(
1
2
𝑀

1
𝑟2 [𝐿𝑖 , [𝐿𝑖 ,𝑀]] + 1

2
𝑚2𝑀2 +𝑉 (𝑀)

)
. (21)
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Figure 1: The two different contractions of a vertex without a permutation symmetry between the external
legs.

We then define the theory using the functional integral correlation functions

⟨𝐹⟩ =
∫
𝑑𝑀 𝐹 (𝑀)𝑒−𝑆 (𝑀)∫

𝑑𝑀 𝑒−𝑆 (𝑀)
(22)

and proceed with the standard calculations using the appropriate version of the Feynman rules
[37, 38]. In what follows we will consider the quartic case 𝑉 (𝑥) = 𝑔𝑥4/4!. This leads to several
important consequences, among which one will play a prime role in our discussion – the UV/IR
mixing [39, 41]. As a consequence of non-locality of the non-commutative theory, the very energetic
UV regime of the theory has consequences for processes at low IR energies. For non-compact non-
commutative spaces, such as a non-commutative plane R2

𝜃
, this leads to divergences of the one-loop

diagrams at zero external momentum, for compact fuzzy spaces the contribution of such diagrams
stays finite, but leads to non-local terms in the one-loop effective actions [41].

From the technical point of view, the problem stems from lack of permutation symmetry of the
fuzzy interaction vertex. The fuzzy modes (3) can be exchanged under the trace in (21) only in a
cyclic fashion and the two contractions depicted in the figure 1 yield a different result. Namely

𝐼𝑃 =

𝑁−1∑︁
𝑗=0

2 𝑗 + 1
𝑗 ( 𝑗 + 1) + 𝑚2 , (23)

𝐼𝑁𝑃 =

𝑁−1∑︁
𝑗=0

2 𝑗 + 1
𝑗 ( 𝑗 + 1) + 𝑚2 𝑁 (−1)𝑙+ 𝑗+𝑁−1

{
𝑙 𝑠 𝑠

𝑗 𝑠 𝑠

}
, 𝑠 =

𝑁 − 1
2

, (24)

where the crucial property of the two diagrams is (non)planarity. Note, how the non-planar
contribution depends on the external momentum 𝑙. One can then write the corresponding one-loop

7
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Figure 2: Two examples of diagrams for kinetic-term-less theory (21).

effective action and look at the result in the commutative limit, which is [41]

𝑆one loop = 𝑆0 +
1
2

∫
𝑑2𝑥 𝜙(𝑥)2𝛿𝑚2− 𝑔

12𝜋

∫
𝑑2𝑥 𝜙(𝑥)ℎ(Δ̃)𝜙(𝑥) , (25)

Δ̃𝑌𝑙𝑚 = 𝑙 𝑌𝑙𝑚 , ℎ(𝑛) =
𝑛∑︁

𝑘=1

1
𝑘
.

We have obtained something different than the effective action of a commutative theory. Even
though the underlying fuzzy sphere became the standard continuous sphere, the theory that was first
defined on 𝑆2

𝐹
remembers the fuzzy origin through the last, strange and non-local, contribution to

the effective action.

Expressing 𝑀 in terms of 𝑇𝑙𝑚 diagonalizes the kinetic term of the action (21) and leaves us
to struggle with the interaction term. A different approach is offered by treating the theory as a
random matrix model [12, 42]. If we drop the kinetic term for a second, we can treat the matrix
model as a field theory with degrees of freedom 𝑀𝑖 𝑗 and propagator and vertex given by

=
〈
𝑀𝑖 𝑗𝑀𝑘𝑙

〉
∼ 1

𝑚2 𝛿𝑖𝑙𝛿 𝑗𝑘 , ∼ 𝑔 . (26)

Lines in the Feynman graphs of such theory are then doubled, two examples are shown in figure
2 and are referred to as ribbon graphs or fat graphs. Matrix models are a huge body of research
[43] and we will observe just two properties of the diagrams relevant to us. The doubled lines take
care of the smaller symmetry of the interaction vertex and the labels running in the loops of the
diagrams are the matrix indices, instead of momenta.

However once we include the kinetic term the situation is much more complicated. The
propagator is no longer diagonal and most of the standard matrix model techniques fail. Something
can be said about such models numerically and in certain approximations, as mentioned in the
introduction, but complete analytical results are lacking.

8
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3.2 Feynmann rules in string modes formalism

Writing the matrix model Feynman rules in the above fashion is using the |𝑖⟩ ⟨ 𝑗 | basis for the
fuzzy functions. But we can use the string modes basis (13) as well [29] to obtain similar looking
rules

=

(
𝑥2
𝑦2

��� 𝑁4𝜋 1
2 + 𝑚2

���𝑥1
𝑦1

)
≈ 𝑁

4𝜋
1

𝑁2

4 |𝑥 − 𝑦 |2 + 𝑚2
⟨𝑥2 |𝑥1⟩ ⟨𝑦2 |𝑦1⟩ , (27)

=
4𝜋
𝑁

𝑔

4!
⟨𝑦1 |𝑥2⟩ ⟨𝑦2 |𝑥3⟩ ⟨𝑦3 |𝑥4⟩ ⟨𝑦4 |𝑥1⟩ . (28)

The labels in the diagrams are now points on the sphere and thanks to (18,7) they are also preserved
along the lines in the large 𝑁 limit. An external line starting with point 𝑥 and ending in point 𝑦
produces a factor ⟨𝑦 |𝑥⟩. Each internal line with no endpoints leaves a position label to be integrated
over.

The string modes bring the best from the two worlds. They diagonalize the kinetic term and
at the same time keep the structure of the vertices simple. All the calculations are done in position
space, which is possible also in standard field theories, but here we do not encounter any singularities
thanks to the non-commutative cutoff and blurred fuzzy structure of the space. Clearly, this sounds
too good to be true. And as is always the case, there is a catch. The price we will have to pay are
the non-local modes

���𝑥
𝑦

)
running in the diagrams or equivalently a non-local theory of a bi-local

field 𝜙(𝑥, 𝑦) characterizing the matrix 𝑀 in (12).

3.3 One-loop effective action and beyond

We can now use the rules of the previous section to analyze loop contributions to the effective
action of the theory (21). As we will see, this leads to a much clearer interpretation of the UV/IR-
mixing contribution in the effective action (25). The two diagrams relevant at one-loop are shown
in the figure 3 and in terms of the field 𝜙(𝑥, 𝑦) the contribution to the effective action reads

𝑔

3

(
𝑁

4𝜋

)4 ∫
𝑑2𝑥1𝑑

2𝑦1𝑑
2𝑥2𝑑

2𝑦2 𝜙(𝑥1, 𝑦1)𝜙(𝑥2, 𝑦2)×

×
[
⟨𝑦2 |𝑥1⟩ ⟨𝑦1 |𝑥2⟩

𝑚2
𝑁

𝑁
+ 1

2
⟨𝑦2 |𝑥2⟩ ⟨𝑦1 |𝑥1⟩

1
𝑁2

4 |𝑥1 − 𝑦2 |2 + 𝑚2

]
, (29)

where the mass renormalization 𝑚2
𝑁

is independent of the external positions 𝑥, 𝑦 but includes a
integral over loop position 𝑧.

If we now consider the case of a local field 𝜙(𝑥, 𝑦) = 𝜙(𝑥) ⟨𝑥 |𝑦⟩ we obtain one-loop effective

9
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Figure 3: The one-loop diagrams contributing to the effective action of the scalar field theory on the fuzzy
sphere. The diagrams are essentially the same as the pure matrix model diagrams 2 and the difference is only
in their interpretation.

Figure 4: Several of the higher loop diagrams contributing to the effective action (29). They all contribute
either to the ⟨𝑦2 |𝑥1⟩ ⟨𝑦1 |𝑥2⟩ or to the ⟨𝑦2 |𝑥2⟩ ⟨𝑦1 |𝑥1⟩ term, second of which leads to the non-local part of the
effective action in the commutative limit.

action

𝑆eff =

∫
𝑑2𝑥 𝜙(𝑥) 1

2
(2 + 𝑚2)𝜙(𝑥) + 𝑔

4!

∫
𝑑2𝑥 𝜙(𝑥)4 + 𝑔

3
1

4𝜋

∫
𝑑2𝑥 𝜙(𝑥)2𝑚2

𝑁+

+ 𝑔

6

(
𝑁

4𝜋

)2 ∫
𝑑2𝑥 𝑑2𝑦 𝜙(𝑥)𝜙(𝑦) 1

𝑁2

4 |𝑥 − 𝑦 |2 + 𝑚2
. (30)

One can show [35] that the last non-local term in the above action reproduces the non-local term in
(25). But here, it has a straightforward interpretation as an exchange of a virtual long string mode.
Even though the local part of the field theory, described by the short string modes with momentum
up to

√
𝑁 , reproduces the degrees of freedom of the commutative theory in the large 𝑁 limit,

the non-local modes are still present and can be exchanged in the loops of diagrams and enter the
commutative limit of the fuzzy theory through quantum corrections.

To conclude, let us comment on higher loop diagrams, examples of which we show in the
figure 4. They all lead to geometric integrals and are thus much more tractable than higher loop
expression in the standard formalism, which include complicated group theoretical factors such as

10
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in (24). Let us concentrate on the middle diagram, which leads to

≈ ⟨𝑦1 |𝑥1⟩ ⟨𝑥2 |𝑦2⟩
( 𝑔
4!

)2 𝑁

4𝜋

[
𝑁

4𝜋

∫
𝑑𝑤 O𝐷

𝑃 (cos 𝜗𝑥1𝑤)O𝐷
𝑃 (cos 𝜗𝑤𝑦1)

]
O𝐷

𝑃 (1) .

(31)

When taken for local external fields, this yields another non-local contribution to the term 𝜙(𝑥)𝜙(𝑦)
in (30). The integral can not be evaluated analytically, but we can compute it numerically as a
function of the separation betwee points 𝑥 and 𝑦. And it can be checked that this contribution is
more non-local than that of the non-planar diagram from figure 2. This confirms the expectation
from the original analysis that higher loops make the UV/IR mixing worse.

4. Discussion and conclusions

We have presented the description of the functions on the fuzzy sphere in terms of string modes
(13). We have shown how the space of functions separates into the short modes, which correspond
to the classical functions, and long modes, which are purely non-commutative. Most interestingly,
an exchange of the non-local long modes produces a non-local term in the effective action for the
local regime of the theory, which survives the commutative limit and leads to the UV/IR-mixing.

The first line of further research would be to investigate the full expression for the field theory
propagator. The diagonal expression (18) we have used is valid in the non-local regime, but
numerical calculations at finite 𝑁 suggest that it should have a reasonable form also for the full
expression (15).

Second, it would be very interesting to study whether the ribbon graph structure of the diagrams
in the string mode formalism leads to a similar hierarchy of graphs as in the pure matrix models,
and to a simplifications or new insights into the higher-loop structure of the fuzzy field theory.

Finally, the above approach has already been used to obtain the Einstein-Hilbert action from
the one-loop effective action of the maximally supersymmetric IKKT or IIB matrix model [36],
where the stringy regime and UV/IR-mixing are suppressed by SUSY. The string modes approach
thus clearly has potential to bring many new results both within and beyond fuzzy field theory.
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