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1. Introduction

Double Field Theory (DFT) was introduced to obtain a T-duality covariant formulation of the
string effective theory [2–5]. Its relation to the Courant algebroid has been noted already in the very
early stage. See [6, 7] for a review and references therein. This relation is very natural since the
generalized geometry [8, 9] offers a description of supergravity which formulates diffeomorphism
and 𝐵-field transformation in a unified way using a Courant algebroid [10, 11]. In generalized
geomerty, the unification of the gauge transformation is performed by considering an extended
fiber, i.e., 𝑇𝑀 ⊕ 𝑇∗𝑀 . In the DFT, on the other hand, the base manifold is extended to the doubled
space asM = 𝑀 × 𝑀̃ , therefore 𝑇M corresponds to the fiber 𝑇𝑀 ⊕ 𝑇∗𝑀 . The origin of the second
space is the winding modes, which is natural from the string view point. However, of course,
since supergravity is defined on 𝑀 and not on M, the space of DFT must be somehow reduced
which is done by the so-called section condition or closure constraint. The gauge symmetry of the
theory is realized up to the section condition, and this makes the covariance of the theory unclear.
Furthermore, the section condition is frame dependent and thus it is troublesome when one analyzes
the generalized T-duality like Poisson-Lie T-duality [12, 13] using DFT.

We apply the metric algebroid [14] as a basic structure of the DFT and construct the invariant
action without referring to the section condition. The metric algebroid is a generalization of the
Courant algebroid, where the Jacobi identity is relaxed. Using the differential graded manifold
(𝑄𝑃-manifold) formulation for the Courant algebroid [15–17], we consider the graded symplectic
manifold 𝑇 [2]𝑇 [1]𝑀 , then the operations in the Courant algebroid are defined by the derived
bracket using the holomorphic function (Hamiltonian) Θ and the graded Poisson bracket {−,−}.
Then, we can understand the algebraic structure as

{Θ,Θ} = 0 · · · Courant algebroid
{Θ,Θ} ≠ 0 · · · Metric algebroid
{Θ,Θ} ≈ 0 · · · DFT

(1)

The graded symplectic manifold is a convenient tool to analyze the algebroid structure e.g. the
Bianchi identities of DFT. One drawback is that there is no natural way to accommodate the dilaton
in the theory. The geometric aspects with algebroid structure in DFT were also investigated in
[18, 19].

It is known that there is another way to realize the derived bracket formulation of the Courant
algebroid by using the Dirac operator and a Clifford module [20]. Then, this Dirac operator, which
is called Dirac generating operator (DGO), and the graded commutator on the Clifford module play
the same roles as the holomorphic function and the graded Poisson bracket in the graded manifold
formulation, respectively. We have a similar classification for the algebroids, and the Bianchi
identities can be formulated using this DGO.

The merit of using the DGO is that there is an ambiguity in its definition and it is this ambiguity
which gives place for the dilaton. The use of the Dirac operator is also very natural for the physicists
since, anyway, in supergravity we have fermions. In the graded manifold formulation, there is a
natural method to define an action for a topological theory. However, for supergravity or DFT,
such a construction is not known. On the other hand, once one introduces a Dirac operator, we
have a Lichnerowicz formula to obtain a scalar curvature which gives an Einstein-Hilbert action.
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A formulation of supergravity using the Lichnerowicz formula is also known [21]. Our second
result is that we formulate the DFT action by a generalization of Lichnerowicz formula to the metric
algebroid. We see that the Lichnerowicz formula is not automatic in the metric algebroid approach.
Some conditions are needed to make it possible and these correspond to the pre-Bianchi identities
which define the class of metric algebroid for DFT. So, the effect of using a formulation with the
Lichnerowicz formula is twofold: First, its existence selects a class of metric algebroid on which
the DFT should be formulated. Second, it gives the action of DFT.

2. Metric algebroid

The metric algebroid [14] A = (𝐸, [−,−], ⟨−,−⟩, 𝜌) is a vector bundle 𝐸 → 𝑀 , with a bracket
[−,−] : Γ(𝐸) × Γ(𝐸) → Γ(𝐸), an inner product ⟨−,−⟩ : Γ(𝐸) × Γ(𝐸) → 𝐶∞(𝑀), a bundle map
(anchor) 𝜌 : 𝐸 → 𝑇𝑀 , and a differential 𝜕 : 𝐶∞(𝑀) → Γ(𝐸) s.t. ⟨𝜕 𝑓 , 𝑎⟩ = 𝜌(𝑎) 𝑓 , satisfying

(𝑎) 𝜌(𝑎)⟨𝑏, 𝑐⟩ = ⟨[𝑎, 𝑏], 𝑐⟩ + ⟨𝑏, [𝑎, 𝑐]⟩ , (2)

(𝑏) [𝑎, 𝑎] = 1
2
𝜕⟨𝑎, 𝑎⟩ , (3)

where 𝑎, 𝑏, 𝑐 ∈ Γ(𝐸) are sections. Compared to the Courant algebroid, the Jacobi identity of the
bracket is dropped. From the above axioms, the following relation can be derived:

(𝑐) [𝑎, 𝑏] = −[𝑏, 𝑎] + 𝜕⟨𝑎, 𝑏⟩ (4)
(𝑑) [𝑎, 𝑓 𝑏] = (𝜌(𝑎) 𝑓 )𝑏 + 𝑓 [𝑎, 𝑏] , (5)
(𝑒) [ 𝑓 𝑎, 𝑏] = −(𝜌(𝑏) 𝑓 )𝑎 + (𝜕 𝑓 )⟨𝑎, 𝑏⟩ + 𝑓 [𝑎, 𝑏] , (6)

For example, (d) can be proven by evaluating 𝜌(𝑒)⟨ 𝑓 𝑎, 𝑏⟩ = 𝜌(𝑒)( 𝑓 ⟨𝑎, 𝑏⟩) in two ways as

⟨[𝑒, 𝑓 𝑎], 𝑏⟩ + ⟨ 𝑓 𝑎, [𝑒, 𝑏]⟩ = (𝜌(𝑒) 𝑓 )⟨𝑎, 𝑏⟩ + 𝑓 𝜌(𝑒)⟨𝑎, 𝑏⟩ , (7)

and using axiom (a) on the l.h.s.
The deviation from the Courant algebroid is characterized by the following maps L : Γ(𝐸) ×

Γ(𝐸) × Γ(𝐸) → Γ(𝐸) and L′ : Γ(𝐸) × Γ(𝐸) → Γ(𝑇𝑀):

L(𝑎, 𝑏, 𝑐) = [𝑎, [𝑏, 𝑐]] − [[𝑎, 𝑏], 𝑐] − [𝑏, [𝑎, 𝑐]] , (8)
L′(𝑎, 𝑏) = 𝜌( [𝑎, 𝑏]) − [𝜌(𝑎), 𝜌(𝑏)]𝑇 𝑀 , (9)

where [−,−]𝑇 𝑀 denotes the standard Lie bracket on 𝑇𝑀 . The map L in (8) is a Jacobiator in
Leibniz like form. We added here L′ which does not vanish in general. If we restrict the algebroid
A by the conditions L = 0, L′ = 0 then the metric algebroid reduces to the Courant algebroid.

L = 0 → L′ = 0 → Courant algebroid
L ≠ 0 L′ = 0 → pre-Courant algebroid
L ≠ 0 L′ ≠ 0 → metric algebroid

(10)

Thus, CA ⊂ pre-CA ⊂ MA, and the DFT structure is somewhere between the pre-CA and MA.
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3. DFT condition and pre-Bianchi identity

To formulate the DFT action using the algebroid structure, we take here the following assump-
tion on the metric algebroid which we call DFT condition.

1. 𝑑𝑖𝑚(𝐸) = 𝑑𝑖𝑚(𝑇M) and the anchor is invertible.

2. We identify the inner product on 𝐸 and on 𝑇M as ⟨𝜌(𝑎), 𝜌(𝑏)⟩𝑇M = ⟨𝑎, 𝑏⟩.

This means that we consider the minimum case, i.e. the dimension of 𝐸 is 2𝐷, where 𝐷 is the
dimension of 𝑀 and of 𝑀̃ , and 𝐸 has an 𝑂 (𝐷, 𝐷) structure.

To describe DFT we first introduce a local basis 𝐸𝐴 on the bundle 𝐸 , s.t.

⟨𝐸𝐴, 𝐸𝐵⟩ = 𝜂𝐴𝐵 , (11)

where 𝜂𝐴𝐵 is a symmetric constant 𝑂 (𝐷, 𝐷) metric. We introduce 𝜂𝐴𝐵 by 𝜂𝐴𝐵𝜂
𝐵𝐶 = 𝛿𝐶𝐴 and the

raising and lowering of indices by 𝜂. Using a local coordinate, the anchor map is defined by a
vielbein as

𝜌(𝐸𝐴) = 𝐸𝐴
𝑀𝜕𝑀 . (12)

Note that the metric on the base manifold 𝜂𝑀𝑁 = ⟨𝜕𝑀 , 𝜕𝑁 ⟩ is not necessarily a constant in general.
In this basis we can write the differential operator as

𝜕 𝑓 =
∑
𝐴

(𝜌(𝐸𝐴) 𝑓 )𝐸𝐴 . (13)

We then define a structure function 𝐹𝐴𝐵
𝐶 ∈ 𝐶∞(𝑀) of the bracket by

[𝐸𝐴, 𝐸𝐵] = 𝐹𝐴𝐵
𝐶𝐸𝐶 . (14)

Using this basis, we can show that

𝐹𝐴𝐵𝐶 = ⟨[𝐸𝐴, 𝐸𝐵], 𝐸𝐶⟩ = 𝐹𝐴𝐵
𝐷𝜂𝐷𝐶 (15)

is totally antisymmetric.
We also introduce the structure functions corresponding to maps L, L′ by using the action on

the local frame 𝐸𝐴:

L(𝐸𝐴, 𝐸𝐵, 𝐸𝐶) = 𝜙𝐴𝐵𝐶
𝐷𝐸𝐷 , (16)

L′(𝐸𝐴, 𝐸𝐵) = 𝜙′
𝐴𝐵

𝐶𝜌(𝐸𝐶) , (17)

where the structure functions 𝜙 and 𝜙′ are represented by the above maps as

𝜙𝐴𝐵𝐶𝐷 = ⟨L(𝐸𝐴, 𝐸𝐵, 𝐸𝐶), 𝐸𝐷⟩ , 𝜙′
𝐴𝐵𝐶 = ⟨L′(𝐸𝐴, 𝐸𝐵), 𝜌(𝐸𝐶)⟩ . (18)

A metric algebroid gives a wider class than necessary for DFT even with the above DFT conditions.
We want to restrict this class by conditions on the structure functions. It is easy to see that the

4



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
8
1

Metric algebroid in Double Field Theory Satoshi Watamura

structure function 𝜙𝐴𝐵𝐶𝐷 is totally antisymmetric and represented by the structure function 𝐹𝐴𝐵𝐶

as:

𝜙𝐴𝐵𝐶𝐷 = ⟨[𝐸𝐴, [𝐸𝐵, 𝐸𝐶]] − [[𝐸𝐴, 𝐸𝐵], 𝐸𝐶] − [𝐸𝐵, [𝐸𝐴, 𝐸𝐶]], 𝐸𝐷⟩

=
1
4!

(
4𝜌(𝐸 [𝐴)𝐹𝐵𝐶𝐷 ] − 3𝐹[𝐴𝐵

𝐴′
𝐹𝐶𝐷 ]𝐴′

)
. (19)

However, 𝜙𝐴𝐵𝐶𝐷 = 0 is not the right restriction, since it is not a tensor and it depends on the choice
of the local basis. We see that 𝜙′ also depends on the choice of the local basis 𝐸𝐴, but we can prove
that 𝜙𝐴𝐵𝐶𝐷

𝜙𝐴𝐵𝐶𝐷 = 𝜙𝐴𝐵𝐶𝐷 + 𝜙′
𝐴𝐵𝐶′𝜙

′
𝐶𝐷

𝐶′ + 𝜙′
𝐴𝐷𝐶′𝜙

′
𝐵𝐶

𝐶′ − 𝜙′
𝐴𝐶𝐶′𝜙

′
𝐵𝐷

𝐶′
. (20)

is a covariant totally antisymmetric tensor. Thus, the condition 𝜙 = 0 gives the relation on the
structure functions which is independent of the choice of the local basis 𝐸𝐴:

𝜙𝐴𝐵𝐶𝐷 = 𝜙𝐴𝐵𝐶𝐷 + 1
8
𝜙′
[𝐴𝐵

𝐸𝜙′
𝐶𝐷 ]𝐸

=
1
6
𝜌(𝐸 [𝐴)𝐹𝐵𝐶𝐷 ] −

1
8
𝐹[𝐴𝐵

𝐸𝐹𝐶𝐷 ]𝐸 + 1
8
𝜙′
[𝐴𝐵

𝐸𝜙′
𝐶𝐷 ]𝐸 = 0 . (21)

We call this condition the pre-Bianchi identity [22]. The pre-Bianchi identity defines a class of
metric algebroid which includes the standard DFT.

There is another condition on the structure functions obtained from the Jacobi identity of the
Lie bracket [−,−]𝑇M on 𝑇M. From (9) it is clear that the structure function 𝜙′

𝐴𝐵𝐶 can be written as

𝜙′
𝐴𝐵𝐶 = 𝐹𝐴𝐵𝐶 − 𝐹 ′

𝐴𝐵𝐶 . (22)

where 𝐹 ′
𝐴𝐵𝐶 is the so-called geometric flux defined by [𝜌(𝐸𝐴), 𝜌(𝐸𝐵)]𝑇M = 𝐹 ′

𝐴𝐵
𝐶𝜌(𝐸𝐶). The

Jacobi identity of the Lie bracket gives the condition on 𝐹 ′
𝐴𝐵𝐶 as

J𝐴𝐵𝐶𝐷 = 𝜌(𝐸 [𝐴)𝐹 ′
𝐵𝐶 ]𝐷 + 𝐹 ′

[𝐵𝐶
𝐶′
𝐹 ′
𝐴]𝐶′𝐷 = 0 (23)

which shows that 𝐹 ′
𝐴𝐵𝐶 is a Lie algebroid structure function on 𝑇M. This gives another condition

on the structure functions 𝐹𝐴𝐵𝐶 and 𝜙′ as

J𝐴𝐵𝐶
𝐶 = 𝜌(𝐸𝐶)𝐹𝐴𝐵

𝐶 − 𝜌(𝐸𝐶)𝜙′
𝐴𝐵

𝐶 − 𝜌(𝐸 [𝐴)𝜙′
𝐵]𝐶

𝐶

− 𝐹𝐴𝐵
𝐶′
𝜙′
𝐶𝐶′

𝐶 + 𝜙′
𝐴𝐵

𝐶′
𝜙′
𝐶𝐶′

𝐶 = 0 . (24)

This condition is related to the pre-Bianchi identity including the dilaton as we shall see below.

4. Geometry on metric algebroid

The geometry on the metric algebroid can be introduced as in the generalized geometry. On
the metric algebroid 𝐸 we define an 𝐸-connection compatible with the inner product ⟨−,−⟩. The
𝐸-connection ∇𝐸 is a map Γ(𝐸) × Γ(𝐸) → Γ(𝐸) satisfying for 𝑎, 𝑏, 𝑐 ∈ Γ(𝐸) and 𝑓 ∈ 𝐶∞(𝑀)

∇𝐸
𝑎 𝑓 𝑏 = (𝜌(𝑎) 𝑓 )𝑏 + 𝑓∇𝐸

𝑎 𝑏 , (25)
∇𝐸

𝑓 𝑎𝑏 = 𝑓∇𝐸
𝑎 𝑏 . (26)
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and the compatibility with the inner product is

𝜌(𝑎)⟨𝑏, 𝑐⟩ = ⟨∇𝐸
𝑎 𝑏, 𝑐⟩ + ⟨𝑏,∇𝐸

𝑎 𝑐⟩ . (27)

Using the basis 𝐸𝐴, the connection ∇𝐸 is defined by a gauge field 𝑊𝐴𝐵𝐶 as

∇𝐸
𝐸𝐴

𝐸𝐵 = 𝑊𝐴𝐵
𝐶𝐸𝐶 . (28)

In the following, we also use the abbreviation ∇𝐸
𝐴 = ∇𝐸

𝐸𝐴
as long as it does not cause confusion.

Compatibility with the fiber metric yields that 𝑊𝐴𝐵𝐶 is antisymmetric in the last two indices.
We can also define 𝐸-torsion [20, 23]. The same torsion was also introduced in DFT context

in [24],

𝑇𝐴𝐵𝐶 =
1
2
𝑊[𝐴𝐵𝐶 ] − 𝐹𝐴𝐵𝐶 , (29)

which is independent of the choice of the local basis [25]. We impose the torsionless condition and
thus the totally antisymmetric part of the spin connection is defined by a metric algebroid structure
function.

For a generalized curvature on the metric algebroid, the independence of the choice of the basis
requires a modification to the generalized curvature introduced in DFT as

R𝐴𝐵𝐶𝐷 = 𝑅∇
𝐴𝐵𝐶𝐷 + 𝑅∇

𝐶𝐷𝐴𝐵 + 𝜙′
𝐴𝐵𝐸𝜙

′
𝐶𝐷

𝐸 , (30)

where

𝑅∇
𝐴𝐵𝐶𝐷 := 𝜌(𝐸 [𝐴)𝑊𝐵]𝐶𝐷 −𝑊[𝐴 |𝐶

𝐸′
𝑊 |𝐵]𝐸′𝐷 − 𝐹𝐴𝐵

𝐸𝑊𝐸𝐶𝐷 + 1
2
𝑊𝐸𝐴𝐵𝑊

𝐸
𝐶𝐷 . (31)

The first two terms in (30) are the curvature given in [24], and the last term is a modification to
recover the tensorial property.

Using these quantities, the pre-Bianchi identity 𝜙(𝑎, 𝑏, 𝑐, 𝑑) = 0 can be represented in curvature
and torsion as

3R [𝐴𝐵𝐶𝐷 ] = 4∇[𝐴𝑇𝐵𝐶𝐷 ] + 3
∑
𝐴′

𝑇[𝐴𝐵 |𝐴′𝑇𝐶𝐷 ]
𝐴′
. (32)

4.1 Divergence

We define a divergence on the metric algebroid following the definition on a Courant algebroid
[20, 25, 26] as a map 𝑑𝑖𝑣 : Γ(𝐸) → 𝐶∞(M), for 𝑎 ∈ Γ(𝐸) and 𝑓 ∈ 𝐶∞(M) s.t.

𝑑𝑖𝑣( 𝑓 𝑎) = 𝜌(𝑎) 𝑓 + 𝑓 𝑑𝑖𝑣(𝑎) . (33)

For a given 𝐸-connection, we can define a divergence 𝑑𝑖𝑣∇ by using a local basis as

𝑑𝑖𝑣∇𝑎 = ⟨∇𝐸
𝐴𝑎, 𝐸

𝐴⟩ , (34)

where 𝑑𝑖𝑣∇ satisfies the relation (33) as

𝑑𝑖𝑣∇ 𝑓 𝑎 = ⟨∇𝐸
𝐴 𝑓 𝑎, 𝐸 𝐴⟩ = ⟨(𝜌(𝐸𝐴) 𝑓 )𝑎, 𝐸 𝐴⟩ + ⟨ 𝑓∇𝐸

𝐴𝑎, 𝐸
𝐴⟩ = 𝜌(𝑎) 𝑓 + 𝑓 𝑑𝑖𝑣∇𝑎 . (35)
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However, the divergence defined by the property (33) is not unique and has an ambiguity by
𝑈 ∈ Γ(𝐸). A general divergence for a given connection is

𝑑𝑖𝑣𝑈∇ (𝑎) = 𝑑𝑖𝑣∇ (𝑎) − ⟨𝑈, 𝑎⟩ . (36)

The Laplacian of the given 𝐸-connection ∇𝐸 is defined by

Δ𝑎 = 𝑑𝑖𝑣𝑈∇𝐸 (∇𝐸𝑎) . (37)

Since the divergence has an ambiguity, the Laplacian has also an ambiguity of 𝑈 ∈ Γ(𝐸).
The reason to use the metric algebroid is to control the closure of the gauge transformation

generated by the generalized Lie derivative of DFT. In order to include the dilaton, we have to
consider the gauge transformation of a field with weight. And the closure of the weight term gives
an extra condition which is not related to the metric algebroid but to the Dirac generating operator
defined below. We define the generalized Lie derivative with weight 𝑝 in the metric algebroid by

𝛿𝑋𝜓 = L𝑋𝜓 + 𝑝(𝑑𝑖𝑣 𝑋)𝜓 (38)

The violation of the closure of the gauge transformation can be written as

( [𝛿𝑋 , 𝛿𝑌 ] − 𝛿 [𝑋,𝑌 ])𝜓 = ( [L𝑋 ,L𝑌 ] − L [𝑋,𝑌 ])𝜓 + 𝑝(𝜌(𝑋)𝑑𝑖𝑣𝑌 − 𝜌(𝑌 )𝑑𝑖𝑣𝑋 − 𝑑𝑖𝑣 [𝑋,𝑌 ])𝜓 (39)

The first term is controlled by the above map L. To discuss the closure of the weight term we define
for a given connection

B𝑖∇ (𝑋,𝑌 ) = 𝑑𝑖𝑣∇ [𝑋,𝑌 ] − 𝜌(𝑋)𝑑𝑖𝑣∇𝑌 + 𝜌(𝑌 )𝑑𝑖𝑣∇𝑋. (40)

As a closure condition, we can not simply take B𝑖∇ zero, since it is not a tensor and such a condition
depends on the choice of the basis. We can show that the difference B𝑖∇ (𝑋,𝑌 ) − 𝑑𝑖𝑣∇L′(𝑋,𝑌 ) is a
tensor. Furthermore, for a connection ∇𝜙′ where the spin connection is defined as 𝑊𝐴𝐵𝐶 = 𝜙′

𝐵𝐶𝐴,
we find that the following holds

B𝑖∇𝜙′ (𝑋,𝑌 ) − 𝑑𝑖𝑣∇𝜙′L′(𝑋,𝑌 ) = 0 , (41)

due to the Jacobi identity of the Lie bracket on 𝑇M.
For a given connection ∇ we know that the difference of the divergences 𝑑𝑖𝑣∇ and 𝑑𝑖𝑣𝜙′ is a

𝐶∞(𝑀)-linear function, and thus, there exists a generalized vector 𝑒∇ ∈ 𝑇M satisfying

𝑑𝑖𝑣∇𝑋 − 𝑑𝑖𝑣∇𝜙′𝑋 = ⟨𝑒∇, 𝑋⟩ . (42)

From the above considerations we conclude

B𝑖∇ (𝑋,𝑌 ) − 𝑑𝑖𝑣∇L
′(𝑋,𝑌 ) = ⟨[𝑒∇, 𝑋], 𝑌⟩ − ⟨𝑒∇,L′(𝑋,𝑌 )⟩ (43)

Since the difference of the two terms on the l.h.s. of (43) is a tensor, taking a basis we obtain a
relation:

𝜌(𝐸𝐶)𝐹 ′
𝐴𝐵

𝐶 + 𝐹 ′
𝐴𝐵

𝐶𝑊𝐷𝐶
𝐷 − 𝜌(𝐸 [𝐴)𝑊𝐶𝐵]

𝐶 = −𝜌(𝐸 [𝐴)𝑒∇𝐵] + 𝑒𝐶∇ (𝐹𝐶𝐴𝐵 − 𝜙′
𝐴𝐵𝐶) (44)
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This can be rewritten as

𝜌(𝐸𝐶)𝐹 ′
𝐴𝐵

𝐶 + 𝜌(𝐸 [𝐴) (𝑒∇𝐵] −𝑊𝐶𝐵]
𝐶) − 𝐹 ′

𝐴𝐵𝐶 (𝑒𝐶∇ −𝑊𝐷
𝐶𝐷) = 0 (45)

Subtracting the Jacobi identity (24) from (45), we obtain an equation for𝑈𝐵 = 𝑒∇𝐵+𝜙′
𝐵𝐶

𝐶−𝑊𝐶𝐵
𝐶 :

𝜌(𝐸 [𝐴)𝑈𝐵] −𝑈𝐶 (𝐹𝐴𝐵𝐶 − 𝜙′
𝐴𝐵𝐶)) = 0 (46)

We identify the dilaton flux 𝐹𝐴 in DFT in terms of the above object as

𝐹𝐴 = −𝑊𝐶𝐴
𝐶 + 𝑒∇𝐴 = 𝑈𝐴 − 𝜙′

𝐴𝐶
𝐶 (47)

where 𝑈𝐴 satisfies (46), as in [1]. Then, we obtain from (45) a DFT Bianchi identity of the dilaton
flux in the metric algebroid structure as

𝜌(𝐸𝐶)(𝐹𝐴𝐵
𝐶 − 𝜙′

𝐴𝐵
𝐶) − (𝐹𝐴𝐵

𝐶′ − 𝜙′
𝐴𝐵

𝐶′)𝐹𝐶′ + 𝜌(𝐸 [𝐴) (𝐹𝐵]) = 0 (48)

As we have shown in [1], the equation for 𝑈𝐴 has a solution 𝑈𝐴 = 2𝜌(𝐸𝐴)𝑑, then

𝐹𝐴 = 2𝜌(𝐸𝐴)𝑑 − 𝜙′
𝐴𝐶

𝐶 , (49)

and therefore, we identify the field 𝑑 with the dilaton.

5. Dirac generating operator

In the formulation by using graded symplectic manifold, bracket and anchor in Courant alge-
broid are defined by the derived bracket [27]. The same can be done by using the Dirac operator
[20, 25, 28] on a Clifford bundle 𝐶𝑙 (𝐸). We consider a linear map 𝛾 : Γ(𝐸) → Γ(𝐶𝑙 (𝐸)) and
denote the image of the base 𝐸𝐴 by 𝛾𝐴 = 𝛾(𝐸𝐴) which satisfies a Clifford algebra:

{𝛾𝐴, 𝛾𝐵} = 𝛾𝐴𝛾𝐵 + 𝛾𝐵𝛾𝐴 = 2𝜂𝐴𝐵 , (50)

then 𝛾(𝑎) = 𝛾(𝑎𝐴𝐸
𝐴) = 𝑎𝐴𝛾

𝐴. By extending the Clifford product Γ(𝐶𝑙 (𝐸)) × Γ(𝐶𝑙 (𝐸)) ∋
(𝑎, 𝑏) → 𝑎𝑏 ∈ Γ(𝐶𝑙 (𝐸)) in the standard way, we get a degree 𝑛 element 𝑋 ∈ 𝐶𝑙 (𝐸) as

𝑋 = 𝑋𝐴1𝐴2 · · ·𝐴𝑛𝛾
𝐴1𝐴2 · · ·𝐴𝑛 , (51)

where 𝛾𝐴1 · · ·𝐴𝑛 is an antisymmetric product of 𝛾𝐴, and we define a graded bracket of 𝑋,𝑌 ∈ 𝐶𝑙 (𝐸)
as

{𝑋,𝑌 } = 𝑋𝑌 − (−1) |𝑋 | |𝑌 |𝑌𝑋 = −(−1) |𝑋 | |𝑌 |{𝑌, 𝑋} . (52)

Note that we do not write the map 𝛾 explicitly for the simplicity.
We also consider the induced connection on 𝐶𝑙 (𝐸) for a given 𝐸-connection as

{∇𝐶𝑙
𝑎 , 𝑏} = ∇𝐸

𝑎 𝑏 , (53)

and Leibniz rule with respect to the Clifford product. Then we introduce a spin bundle S where a
spinor 𝜒 ∈ Γ(S) is a module over the Clifford bundle.
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The Dirac operator is defined on the spinor /𝐷 : Γ(S) → Γ(S) and we can find a Dirac
generating operator (DGO) which generates the operations by the derived bracket:

𝜕 𝑓 = 2{ /𝐷, 𝑓 } , (54)
[𝑎, 𝑏] = {{ /𝐷, 𝑎}, 𝑏} , (55)
𝜌(𝑎) 𝑓 = {{ /𝐷, 𝑎}, 𝑓 } . (56)

They satisfy the axiom of the metric algebroid. We can also get the expressions of L and L′ by this
DGO as

L(𝑎, 𝑏, 𝑐) = −{{{ /𝐷2, 𝑎}, 𝑏}, 𝑐} , (57)

L′(𝑎, 𝑏) 𝑓 = {{ /𝐷2, 𝑎}, 𝑏}, 𝑓 } . (58)

The derived bracket construction works completely analogous as in the differential graded manifold
approach and we can derive all the relations of the metric algebroid.

The advantage of the formulation using the DGO is that we can define the action by generalizing
the Lichnerowicz formula. The original Lichnerowicz formula on a manifold is given by a Levi-
Civita connection ∇ and corresponding Dirac operator /∇ as

/∇2 − ∇2 = −1
4
𝑅 , (59)

where 𝑅 is a scalar curvature. One can also include 𝐻-flux, and a corresponding formula for the
supergravity has also been given. See [21] and reference therein.

To obtain the Lichnerowicz formula for DFT, we take a torsion free 𝐸-connection ∇𝐸𝐴𝐸𝐵 =
𝑊𝐴𝐵

𝐶𝐸𝐶 . Then, a corresponding connection on the spinor is

∇S𝐴 = 𝜕𝐴 − 1
4
𝑊𝐴𝐵𝐶𝛾

𝐵𝐶 , (60)

where 𝜕𝐴 = 𝜌(𝐸𝐴). The DGO can be given by this connection as /𝐷 = 1
2𝛾

𝑎∇S𝐴 which can be written
as

/𝐷 =
1
2
(𝛾𝐴𝜕𝐴 − 1

12
𝐹𝐴𝐵𝐶𝛾

𝐴𝐵𝐶 − 1
2
𝐹𝐴𝛾

𝐴) , (61)

where we denoted the totally antisymmetric part of the connection as 1
2𝑊[𝐴𝐵𝐶 ] = 𝐹𝐴𝐵𝐶 and the

trace part as 𝑊𝐵
𝐵𝐴 = 𝐹𝐴. Using this DGO, we get a metric algebroid with the structure function

𝐹𝐴𝐵𝐶 . The flux 𝐹𝐴 which appeared here is an ambiguity of the DGO, i.e., it is not determined and
is free parameter from the metric algebroid viewpoint.

As in the original Lichnerowicz formula, /𝐷2 is not a scalar function and we have to subtract a
derivative term. We subtract a Laplacian constructed by a specific connection given by the structure
function 𝜙′

𝐴𝐵𝐶 . This is possible since the structure function 𝜙′
𝐴𝐵𝐶 has the same transformation

under a local 𝑂 (𝐷, 𝐷) rotation as the 𝑊𝐶𝐴𝐵. Thus, we have a connection on the Clifford module
Γ(S) s.t.

∇𝜙′

𝐴 = 𝜕𝐴 − 1
4
𝜙′
𝐵𝐶𝐴𝛾

𝐵𝐶 . (62)

The corresponding Laplace operator is then given by

Δ𝜙′
= 𝑑𝑖𝑣𝑈∇𝜙′∇𝜙′

= 𝜂𝐴𝐵∇𝜙′

𝐴 ∇𝜙′

𝐵 − (𝜙′
𝐵
𝐴𝐵 +𝑈𝐴)∇𝜙′

𝐴 , (63)
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where 𝑈𝐴 is a vector representing the ambiguity in the divergence. The generalized Lichnerowicz
formula is given by the difference of the square of the Dirac generating operator and the Laplacian
Δ𝜙′

4 /D2 − Δ𝜙′
= − 1

24
𝐹𝐴𝐵𝐶𝐹

𝐴𝐵𝐶 − 1
2
(𝜌(𝐸𝐴)𝐹𝐴) + (−𝐹𝐴 + 𝜙′

𝐸
𝐴𝐸 +𝑈𝐴)𝜕𝐴 + 1

4
𝐹𝐴𝐹

𝐴 + 1
8
𝜙′
𝐵𝐶𝐴𝜙

′𝐵𝐶𝐴

+1
4

(
−J𝐵𝐶𝐷

𝐷 + (𝜌(𝐸 [𝐵) (−𝐹𝐶 ] + 𝜙′𝐷
𝐶 ]𝐷) − (−𝐹𝐴 + 𝜙′

𝐷
𝐴𝐷)𝐹𝐴𝐵𝐶 −𝑈𝐴𝜙

′
𝐵𝐶

𝐴
)
𝛾𝐵𝐶

−1
2
𝜙𝐵𝐶𝐵′𝐶′𝛾𝐵𝐶𝐵′𝐶′

(64)

We see that the second order derivative term is canceled by the Laplacian. However, it is not a
function and there are still non-scalar terms proportional to 𝜕𝐴,𝛾𝐴𝐵 and 𝛾𝐴𝐵𝐶𝐷 . We require that
these non-scalar terms should vanish then we obtain the conditions

𝜕𝐴 : 𝐹𝐴 = 𝜙′
𝐵𝐴

𝐵 +𝑈𝐴 (65)
𝛾𝐵𝐶 : 𝜌(𝐸 [𝐴)𝑈𝐵] − 𝐹 ′

𝐴𝐵
𝐶𝑈𝐶 + J𝐴𝐵𝐶

𝐶 = 0 (66)
𝛾𝐴𝐵𝐶𝐷 : 𝜙𝐴𝐵𝐶𝐷 = 0 (67)

The terms proportional to 𝛾𝐴𝐵𝐶𝐷 are represented as 𝜙𝐴𝐵𝐶𝐷 and the condition (67) coincides with
the pre-Bianchi identity. The condition from the terms proportional to 𝜕𝐴 gives a relation between
the ambiguity of the DGO and the ambiguity of the divergence as (65). Using (65), the condition
from the terms proportional to 𝛾𝐴𝐵 becomes (66), giving a condition on 𝑈𝐴 which is solved by
𝑈𝐴 = 2𝜕𝐴𝑑 with a function 𝑑. In this way we get the ambiguity 𝐹𝐴 of the DGO where J𝐵𝐶𝐷

𝐷

is the tensor defined in the identity (24). Thus, with the pre-Bianchi identity we get a generalized
Lichnerowicz formula

4 /D2 − Δ𝜙′
=

1
8

R . (68)

5.1 Projected Lichnerowicz formula

The scalar curvature given in the generalized Lichnerowicz formula is not the scalar in the
action of DFT. This is natural since we did not introduce a Riemann structure yet. As in the
generalized geometry, we introduce the Riemann structure by splitting the bundle into positive and
negative sub-bundle as

𝐸 = 𝑉+ ⊕ 𝑉− ,where 𝑉± = {𝑎 ∈ 𝐸 |⟨𝑎, 𝑎⟩ = ±|⟨𝑎, 𝑎⟩|} . (69)

By this splitting, the 𝑂 (𝐷, 𝐷) symmetry reduces to 𝑂 (𝐷 − 1, 1) ⊗ 𝑂 (1, 𝐷 − 1). We consider the
corresponding basis and distinguish correspondingly the indices as

𝐸𝑎, 𝐸𝑎̄ ∈ 𝑉+ ⊕ 𝑉− . (70)

A compatible connection is introduced by

⟨∇𝐸
𝐸𝐴

𝐸𝑏, 𝐸𝑐̄⟩ = 0 and ⟨∇𝐸
𝐸𝐴

𝐸𝑏̄, 𝐸𝑐⟩ = 0. (71)

Thus, the non-zero components are 𝑊𝐴𝑎𝑏 and 𝑊𝐴𝑎̄𝑏̄ and the compatible spin connection is given
by

∇S+𝐴 = 𝜕𝐴 − 1
4
𝑊𝐴𝑎𝑏𝛾

𝑎𝑏 . (72)
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To obtain a projected Lichnerowicz formula, we consider a Dirac operator

/D+ =
1
2
𝛾𝑎∇S+𝑎

=
1
2
𝛾𝑎𝜕𝑎 −

1
24

𝐹𝑎𝑏𝑐𝛾
𝑎𝑏𝑐 − 1

4
𝐹𝑎𝛾

𝑎 . (73)

and also a connection by 𝜙′
𝐴𝐵𝐶 as

∇𝜙′+

𝐴 = 𝜕𝐴 − 1
4
𝜙′
𝑏𝑐𝐴𝛾

𝑏𝑐 . (74)

Then, the projected Lichnerowicz formula is given by

𝐿+ = 4 /𝐷+2 + 𝑑𝑖𝑣∇∇S
+

− − Δ𝜙′+
. (75)

As in the generalized Lichnerowicz formula case, the terms proportional to 𝜕𝐴 give a relation
𝐹𝐴 = 𝜙′

𝐵𝐴
𝐵 +𝑈𝐴 and with this relation, we obtain

𝐿+ = R𝐷𝐹𝑇 − 1
4

(
J𝑎𝑏𝐶

𝐶 + 𝜌(𝐸 [𝑎) (𝑈𝑏]) −𝑈𝐶 (𝐹𝐶𝑎𝑏 − 𝜙′
𝑎𝑏𝐶)

)
𝛾𝑎𝑏 − 1

2
𝜙𝑎𝑏𝑐𝑑𝛾

𝑎𝑏𝑐𝑑 , (76)

where

R𝐷𝐹𝑇 = − 1
24

𝐹𝑎𝑏𝑐𝐹
𝑎𝑏𝑐 − 1

8
𝐹 𝑎̄𝑏𝑐𝐹𝑎̄𝑏𝑐 −

1
2
𝜌(𝐸𝑎)𝐹𝑎 + 1

4
𝐹𝑎𝐹

𝑎 − 1
8
𝜙′
𝑎𝑏𝐶𝜙

′𝑎𝑏𝐶 . (77)

We see that with the pre-Bianchi identity 𝜙𝐴𝐵𝐶𝐷 = 0, and taking the 𝑈𝐴 as a solution of the
condition from 𝛾𝑎𝑏 we get the Lichnerowicz formula for DFT.

6. Discussion

We presented the projected generalized Lichnerowicz formula which gives the scalar curvature
of the DFT action. To define this action we have to introduce the integration measure. The consistent
measure is 𝜇 = 𝑑2𝐷𝑋

√
det 𝜂𝑀𝑁 𝑒−2𝑑 . The DGO gives a way for this. There is a natural generalized

Lie derivative generated by the DGO of the spinor 𝜒 ∈ Γ(S) by 𝑎 ∈ Γ(𝐸) as

L𝑎𝜒 = { /𝐷, 𝑎}𝜒 . (78)

One can show that this is a generalized Lie derivative with weight 1
2 . Then, we split the spinor as

𝜒 = 𝜒0 ⊗ 𝜇
1
2 ∈ Γ(S) = Γ(S′) ⊗ Γ(Λ 1

2 ) with a factor of the weight 1
2 bundle Λ

1
2 . We define an

inner product Γ(S) × Γ(S) → Γ(Λ) which defines a section 𝜇 ∈ Γ(Λ) which we identify with the
integration measure [26]. We introduced a dilaton 𝑑 as a function defined by the section 𝜇 = 𝑒−2𝑑𝜇0

with a base 𝜇0 of Γ(Λ). The gauge transformation of the dilaton is defined from the Lie derivative
of 𝜇 as

L𝑎 (𝑒−2𝑑𝜇0) = (−2𝛿𝑎𝑑)𝑒−2𝑑𝜇0 (79)

In this formulation, using the metric algebroid, there is no need to refer to the section condition in
order to obtain the action. Just we need to restrict the class of metric algebroid by imposing the
pre-Bianchi identity on the structure functions.
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