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The de Sitter group and its presence at the late-time boundary Gizem Şengör

1. Introduction

The group 𝑆𝑂 (𝑑 + 1, 1) is both the conformal group of Euclidean space in 𝑑 dimensions and
the isometry group of de Sitter in 𝑑 + 1 dimensions. It appears in different venues in physics from
Euclidean conformal field theory to Cosmology.

𝑆𝑂 (𝑑 + 1, 1) is a noncompact group. It is one of the Lorentz groups along with 𝐼𝑆𝑂 (𝑑, 1)
also known as the Poincaré or the inhomogeneous Lorentz group, and 𝑆𝑂 (𝑑, 2). Each one of these
groups are involved in physics of maximally symmetric spacetimes with a different value of the
cosmological constant.

Much of the information on the properties of the group 𝑆𝑂 (𝑑+1, 1) and its representations stem
from the works of Harish-Chandra. The case of 𝑆𝑂 (2, 1) have been given more special attention.
These representations are also captured by the 𝑆𝐿 (2, 𝑅) representations, pedagogical reviews on
which can be found in [1] and [2]. Recent reviews from the physics literature on the de Sitter group
in general dimensions include [3] which focus on cases of integer spin, and in sections of [4] that
focus on the scalar representations and how they manifest themselves at the late-time boundary. For
the case of spinors we refer the readers to [5] and references within. Here we will mainly follow the
in depth monologue [6].

In what follows we will focus on the well defined inner product and what it means to have
unitary representations. We will explicitly give an example on the use of the scalar complementary
series inner product, which involves an intertwining operator 𝐺, following [4] with focus on the
realization of these representations at the late-time boundary of de Sitter. We will conclude our
discussion by pointing out some properties of the tensor product in the case of principal series
following [6] with an example again from the late-time boundary.

2. The group 𝑆𝑂 (𝑑 + 1, 1)

The group 𝑆𝑂 (𝑑 + 1, 1) is the group of all linear transformations in 𝑑 + 2 dimensions that leave
the following quadratic form invariant

𝑣𝜂𝑣 = −𝑣2
0 + 𝑣

2
1 + ... + 𝑣

2
𝑑 + 𝑣2

𝑑+1, 𝜂𝜇𝜈 = 𝑑𝑖𝑎𝑔[−1, 1, . . . 1] . (1)

The group elements 𝑔, are (𝑑 +2) × (𝑑 +2) matrices with unit determinant that also satisfy 𝑔0
0 ≥ 1,

𝑔𝑇𝜂𝑔 = 𝜂, where 𝑇 stands for the transpose.
The Lie algebra so(𝑑 + 1, 1) consists of real (𝑑 + 2) × (𝑑 + 2) dimensional matrices, 𝑋 that

satisfy 𝑋𝑇𝜂 + 𝜂𝑋 = 0, with 𝐴, 𝐵 = 0, 1, . . . 𝑑 + 1. With these real generators and real parameters 𝛼,
group elements can be represented by exponentiation of the generators as follows

𝑔𝑋 (𝛼) = 𝑒𝛼𝑋 (2)

As also discussed in [3] and [7], with real parameters 𝛼 and real generators 𝑋 , if this is to be a
unitary representation then

𝑔
†
𝑋
(𝛼)𝑔𝑋 (𝛼) = 1 =⇒ 𝑋† = −𝑋. (3)
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Since 𝑋 are real their dagger is just the transpose and this implies a basis such that 𝑋𝐴𝐵 = −𝑋𝐵𝐴.
In this basis the commutations relations are [6]

[𝑋𝐴𝐵, 𝑋𝐶𝐷] = 𝜂𝐴𝐶𝑋𝐵𝐷 + 𝜂𝐵𝐷𝑋𝐴𝐶 − 𝜂𝐴𝐷𝑋𝐵𝐶 − 𝜂𝐵𝐶𝑋𝐴𝐷 . (4)

A matrix realization in this basis is

(𝑋𝐴𝐵)𝐶𝐷 = 𝜂𝐴𝐷𝛿
𝐶
𝐵 − 𝜂𝐵𝐷𝛿𝐶𝐴 . (5)

These mathematical generators are related to physical generators by 𝐽𝐴𝐵 = 𝑖𝑋𝐴𝐵. With the
mathematical generators 𝑋 being real and antisymmetric, the physical generators 𝐽 are

(𝐽𝐴𝐵)† = (𝑖𝑋𝐴𝐵)† = −𝑖𝑋𝐵𝐴 = 𝑖𝑋𝐴𝐵 = 𝐽𝐴𝐵, (6)

guaranteed to be Hermitian.
What the unitarity of the representation implies for the adjoint of the generator has different

consequences for each of the cases of 𝑠𝑜(𝑑 + 1, 1) algebra, of rotation algebra as pointed out in [7]
and of 𝑠𝑜(𝑑, 2) algebra as pointed out in [3].

Certain generators among the 1
2 (𝑑 + 1) (𝑑 + 2) generators generate specific subgroups. Here

we list them with emphasis on their compact or non-compact nature.
The non-compact subgroups are :

• 𝐴 = 𝑆𝑂 (1, 1): The generator 𝐷 = 𝑋𝑑+10 generates dilatations.

• 𝑁: The generators 𝐶𝑖 = 𝑋𝑖0 − 𝑋𝑖𝑑+1 where 𝑖 = 1, ..., 𝑑, generate special conformal transfor-
mations.

• 𝑁̃: The generators 𝑇𝑖 = 𝑋𝑖0 + 𝑋𝑖𝑑+1 generate spatial translations.

• 𝐻, all together the generators 𝐷, 𝑋12, ..., 𝑋(2[ 𝑑
2 ]−1) (2[ 𝑑

𝑠 ]) where
[
𝑑
2
]

stands for the integer
part of 𝑑

2 generate the so called Cartan subgroup. This is the abelian group of
[
𝑑
2
]
+ 1

dimensional diagonalizable matrices.

The above are all abelian subgroups. The compact subgroups are:

• 𝐾 = 𝑆𝑂 (𝑑 + 1): This is the maximally compact subgroup. It is generated by 𝑋𝑎𝑏, where
𝑎, 𝑏 = 1, ..., 𝑑 + 1.

• 𝑀 = 𝑆𝑂 (𝑑): The generators 𝑋𝑖 𝑗 with 𝑖, 𝑗 = 1, . . . 𝑑 generate the so called "Euclidean Lorentz
group". This is the subgroup of spatial rotations. This subgroup is the centralizer of 𝐴 in 𝐾
this means for 𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐴, 𝑚𝑎𝑚−1 = 𝑎 where 𝑚−1 denotes the inverse of 𝑚.

The quadratic Casimir operator of this algebra is

𝐶2(𝜒) = −1
2
𝑋2
𝑖 𝑗 + 𝐷2 + 𝑑𝐷 + 𝐶𝑖𝑇𝑖 , (7)

with eigenvalues

𝑐2(𝜒) = 𝑙 (𝑙 + 𝑑 − 2) + 𝑐2 − 𝑑2

4
. (8)

We explain the labels 𝑙 and 𝑐 in the next section.
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3. The unitary irreducible representations of 𝑆𝑂 (𝑑 + 1, 1)

Representations of a group are labelled by the eigenvalues of the quadratic casimir of the
algebra. For so(𝑑 + 1, 1), the free variables of these eigenvalues are spin, here denoted by 𝑙, which
labels the representations of the rotation subgroup 𝑀 , and the scaling weight, denoted by 𝑐, which
is associated to the representations of dilatations and special conformal transformations.

Primary operators transform under dilatations with a scaling dimension Δ as follows

O(𝜆𝑥) = 𝜆−ΔO(𝑥). (9)

For the group 𝑆𝑂 (𝑑 + 1, 1), the scaling dimension has the following form

Δ =
𝑑

2
+ 𝑐. (10)

A part of the scaling dimension is fixed by the number of spatial dimensions1. The free part 𝑐,
is called the scaling weight and it can be either real or purely imaginary. The unitary irreducible
representations fall under four different categories, characterized by the scaling weight and spin.
These categories are denoted by 𝜒 = {𝑙, 𝑐}.

A unitary representation preserves the inner products of states. There are two ways to build
these states. One way is to construct the states |𝑙, 𝑐〉, by considering how the generators of the
algebra act on them. A second way is to first build operators O{𝑙,𝑐} from functions on finite group
elements. Then states are defined by considering the action of these operators on the vacuum |0〉
that remains invariant under 𝑆𝑂 (𝑑 + 1, 1) transformations, |O{𝑙,𝑐}〉 ≡ O{𝑙,𝑐} |0〉. In either way, the
normalization for the states works differently for each category.

Following the first route of construction from the algebra, when one constructs normalized
states

|𝑙, 𝑐〉𝑁 ≡ N |𝑙, 𝑐〉, (11)

such that
𝑁 〈𝑙′, 𝑐′ |𝑙, 𝑐〉𝑁 = 𝛿𝑙,𝑙′𝛿𝑐,𝑐′ (12)

the normalization N has a different value for each category. In [7] this is worked out explicitly
for 𝑆𝑂 (2, 1) in comparison with 𝑆𝑂 (3). From more recent literature, [8] and [9] also pursue this
route, with focus on the principal series category, for 𝑆𝐿 (2, 𝑅) representations which accommodate
𝑆𝑂 (2, 1) representations.

In the second route of construction from function spaces the well defined inner product for
each category differs. Here following [6] we will summarize this construction with focus on scalar
representations. But before moving on to details let us first briefly describe each category.

A major distinction between categories is to do with the scaling weight being purely imaginary
or real. In the case of purely imaginary scaling weight, (𝑐 = 𝑖𝜌, with 𝜌 ∈ R), the inner product is
straight forward and this hosts only the principal series representations. In the case where the scaling
weight is real, there are three different categories, namely complementary series, exceptional series
and discrete series. For these three categories the inner product involves intertwining operators.
Each of these three categories span a different range of the real scaling weight and each one has

1The quantity 𝑑
2 corresponds to the half sum of the restricted positive roots [6].
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a different intertwining operator involved. The range on 𝑐 and the intertwining operator involved
depends on spin.

• Principal Series: This is the category with purely imaginary scaling weight and straight
forward inner product as we will explain shortly.

• Complementary Series: For 𝑙 = 0 this category arises in the range − 𝑑
2 < 𝑐 < 𝑑

2 provided
𝑑
2 ≥ 1, and for 𝑙 = 1, 2, .., in the range 1− 𝑑

2 < 𝑐 <
𝑑
2 − 1 with 𝑑

2 > 1. The well defined inner
product involves an intertwining operator, 𝐺𝜒. This is a normalizable operator that maps
representations 𝜒 = {𝑙, 𝑐} to their equivalent duals 𝜒̃ = {𝑙, 𝑐 = −𝑐}, leaving the character
invariant.

• Exceptional Series: These representations appear at the values of 𝑐 for which the comple-
mentary series range stops. At these points the complementary series intertwining operator
becomes ill defined, as we will discuss in section 3.1. For instance for 𝑙 = 0, 𝑐 = − 𝑑

2 belong
to exceptional series in any dimensions. In general for exceptional series, the dual represen-
tations 𝜒 and 𝜒̃ are not equivalent. This category further splits into four different categories
and they are reducible representations. They involve different intertwining operators. These
intertwining operators have explicit forms in momentum space for some of the categories and
explicit forms in position space for others.

• Discrete Series: These representations arise when the rank of the group equals the rank of the
maximally compact subgroup (𝑟𝑎𝑛𝑘𝑆𝑂 (𝑑 + 1, 1) = 𝑟𝑎𝑛𝑘𝑆𝑂 (𝑑 + 1)), this is only satisfied for
𝑑 + 1 = 𝑒𝑣𝑒𝑛. Moreover, unitary irreducible discrete series representations are not unitarily
equivalent to their mirror images2, and this further restricts them to exist only for 𝑑 + 1 = 2, 4
dimensions [6].

In the case of two dimensions, 𝑆𝑂 (2, 1) representations are accommodated within the 𝑆𝐿 (2, 𝑅)
representations. In two dimensions, 𝑀 = 𝑆𝑂 (1), the rotations are trivial and the representations
are labelled only by 𝑐. The 𝑆𝐿 (2, 𝑅) representations are constructed on spaces of homogeneous
functions of real variables with degree 𝑠 which can have even or odd parity 𝜖 (where 𝜖 = 0 for
even, 𝜖 = 1 for odd parity). These representations are labelled by {𝜖, 𝑠} [2]. The {𝜖 = 0, 𝑠 = −2𝑐}
representations of 𝑆𝐿 (2, 𝑅) correspond to the elementary 𝑆𝑂 (2, 1) representations (see for instance
[6] appendix B.4).

Elementary representations are induced by the stability subgroup of the group of interest. In
the case of 𝑆𝑂 (𝑑 + 1, 1) the stability subgroup is the parabolic subgroup which is the combination
of special conformal transformations, dilatation and rotations, 𝑃 = 𝑁𝐴𝑀 . For comparison, the
parabolic subgroup for 𝑆𝑂 (𝑑 + 1, 1) plays the role of the Little group for Poincaré. In building
representations based on functions f(𝑔), from finite group elements 𝑔 ∈ 𝐺 to a Hilbert space, the
representation T 𝜒 acts on these functions by a homomorphism. The functions f(𝑔) form a function

2Mirror images of representations 𝐷𝑙 (𝑚) of the rotation subgroup 𝑀 are defined as[6]

𝐷Π𝑙 (𝑚) ≡ 𝐷𝑙 (Π𝑚Π−1) (13)

where Π is the space reflection with properties Π2 = Π𝑇Π = 1, 𝑑𝑒𝑡 (Π) = −1.

5
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space C𝜒, with certain properties. In the case of 𝑆𝑂 (𝑑 + 1, 1), these functions have their values
on the Hilbert space V𝑙 on which the unitary irreducible representations (𝐷𝑙 (𝑚)), of the rotation
subgroup 𝑀 = 𝑆𝑂 (𝑑) are realized. The elements of C𝜒 are infinitely differentiable and satisfy a
so called covariance condition. The covariance condition is an identity that determines how the
function scales if one considers the specific argument 𝑔𝑛𝑎𝑚, that is the combination of an arbitrary
group element 𝑔 with elements from the subgroups of special conformal transformations (𝑛 ∈ 𝑁),
dilatation (𝑎 ∈ 𝐴) and rotations (𝑚 ∈ 𝑀):

irrep covariance condition: f(𝑔𝑛𝑎𝑚) = |𝑎 | 𝑑2 +𝑐𝐷𝑙 (𝑚)−1f(𝑔). (14)

There is a one-to-one correspondance between functions of group elements f(𝑔) and functions
on position space 𝑓 (𝑥) where 𝑥 ∈ R𝑑 as follows: [6]

to each 𝑥 ∈ R𝑑 corresponds a unique 𝑛̃𝑥 ∈ 𝑁̃ such that: 𝑓 (𝑥) = f(𝑛̃𝑥) (15a)
to each 𝑔 ∈ 𝐺 corresponds a unique 𝑥𝑔 ∈ R𝑑 such that: 𝑔−1𝑛̃𝑥 = 𝑛̃𝑥𝑔𝑛

−1𝑎−1𝑚−1 (15b)

where the subscripts are to emphasize the uniquely corresponding element. For instance 𝑛̃𝑥
is the element of translations corresponding to a specific 𝑥, and the second line is the defining
condition for 𝑥𝑔, the element of R𝑑 corresponding to a specified 𝑔. Due to dilatations and special
conformal transformations the volume elements are related as

𝑑𝑑𝑥𝑔 = |𝑎 |−𝑑𝑑𝑑𝑥. (16)

To summarize so far, we have the function space

C𝜒 =

{
f : 𝐺 → V𝑙 such that f(𝑔𝑛𝑎𝑚) = |𝑎 | 𝑑2 +𝑐𝐷𝑙 (𝑚)−1f(𝑔)

}
. (17)

Representations of 𝑆𝑂 (𝑑 + 1, 1) act on functions that belong to this function space by the following
homomorphism

[T 𝜒 (𝑔)f] (𝑔′) = f(𝑔−1𝑔′) where 𝑔, 𝑔′ ∈ 𝐺, f ∈ C𝜒 . (18)

One can further complete the function space C𝜒 to a Hilbert space by equipping it with an inner
product. This inner product can be build upon the inner product 〈.|.〉 that is invariant under rotations
𝑀 , and can be expressed in position space as follows

( 𝑓1, 𝑓2) =
∫

𝑑𝑑𝑥𝑔〈 𝑓1(𝑥𝑔) | 𝑓2(𝑥𝑔)〉. (19)

If T 𝜒 (𝑔) is a unitary representation, then it should preserve the inner product

unitarity: (T 𝜒 (𝑔) 𝑓1,T 𝜒 (𝑔) 𝑓2) = ( 𝑓1, 𝑓2) . (20)

By considering 𝑔′ = 𝑛̃ in (18) and (14) one can re-express the homomorphism and the covariance
condition for functions on position space. Through the properties of C𝜒 we mentioned so far the
left hand side of (20) gives [4]

(T 𝜒 (𝑔) 𝑓1,T 𝜒 (𝑔) 𝑓2) =
∫

𝑑𝑑𝑥𝑔 |𝑎 |−(𝑐∗+𝑐) ( 𝑓1(𝑥𝑔), 𝑓2(𝑥𝑔)) (21)
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where ∗ denotes complex conjugation. Only in the case of principal series representations the
contribution |𝑎 |−(𝑐∗+𝑐) disappears due to 𝑐 being purely imaginary. The inner product (19), works
for principal series representations. For the other three representations intertwining operators,
which flip the sign of the scaling weight while leaving 𝑙 invariant, are introduced so as to remove
this piece. Now let us see how this works with an explicit example for the case of complementary
series representations.

3.1 The complementary series inner product

The well defined inner product for the complementary series is(
𝑓1, 𝐺 𝜒̃ 𝑓2

)
(22)

where 𝐺 𝜒̃ is an intertwining operator. The intertwining operator is an invertible map between
the function space C𝜒 and C𝜒̃ where 𝜒 = {𝑙, 𝑐} while 𝜒̃ = {𝑙, 𝑐} such that 𝑐 = −𝑐. For 𝐺𝜒,
its inverse is 𝐺 𝜒̃. It maps representations with Δ = 𝑑

2 + 𝑐 to representations with Δ̃ = 𝑑
2 − 𝑐.

The scaling weight enters into the eigenvalue of the quadratic casimir by 𝑐2 and therefore the
intertwined operators belong to the same Casimir eigenvalue. Moreover the intertwining operation
is a similarity operation. Hence the intertwined representations have the same trace and are
equivalent representations. Since under this operation the dimensions satisfy

Δ + Δ̃ = 𝑑 (23)

the intertwining operator carries out a shadow transformation.
In employing these intertwining operators one needs to pay attention to the normalization and

on which function space which operator acts. 𝐺𝜒 acts on C𝜒̃ and is well defined for 𝑅𝑒(𝑐) < 0,
while 𝐺 𝜒̃ acts on C𝜒 and is well defined for 𝑅𝑒(𝑐) > 0. For the normalization of the intertwining
operator, there are a few possible choices each of which is suitable for a different purpose. The
appropriate normalization for the positivity of the scalar product is

𝑛+(𝜒) = 𝑛+(𝑙, 𝑐) =
(
𝑑

2
+ 𝑙 + 𝑐 − 1

) Γ (
𝑑
2 + 𝑐 − 1

)
Γ(−𝑐) . (24)

Note that the normalization choice 𝑛+(𝜒) diverges for certain values of 𝑐, for instance whenever
the gamma function has a negative integer argument. This happens for the exceptional series
representations and the intertwining operator has a different normalization in those cases. The
appropriate normalization for Wightman positivity and operator product expansion is also different
then (24). These other normalizations can be found in [6] section 5.C.

One place where one encounters the 𝑆𝑂 (𝑑+1, 1) representations is in considering the late-time
behaviour of scalar fields in the Poincaré patch of de Sitter [4], with metric

𝑑𝑠2 =
−𝑑𝜂2 + 𝑑®𝑥2

𝐻2 |𝜂 |2
, 𝜂 ∈ (−∞, 0), ®𝑥 ∈ R𝑑 . (25)

In the late-time limit free quantized scalar fields that satisfy Bunch-Davies initial conditions with
masses in the range 𝑚 < 𝑑

2𝐻, decomposed in terms of Fourier modes behave as

lim
𝜂→0

𝜙(®𝑥, 𝜂) =
∫

𝑑2𝑘

(2𝜋)𝑑
[
|𝜂 | 𝑑2 −𝜈𝛼𝐿 ( ®𝑘) + |𝜂 | 𝑑2 +𝜈𝛽𝐿 ( ®𝑘)

]
𝑒𝑖

®𝑘 · ®𝑥 (26)

7
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with

𝜈2 =
𝑑2

4
− 𝑚2

𝐻2 , (27)

𝛼𝐿 ( ®𝑘) = − 𝑖
𝜋
Γ(𝜈)𝑁𝛼

[
𝑎 ®𝑘 − 𝑎

†
− ®𝑘

] ( 𝑘
2

)−𝜈
(28)

𝛽𝐿 ( ®𝑘) =
𝑁𝛽

Γ(𝜈 + 1)

[
(1 + 𝑖𝑐𝑜𝑡 (𝜋𝜈)) 𝑎 ®𝑘 + (1 − 𝑖𝑐𝑜𝑡 (𝜋𝜈)) 𝑎†

− ®𝑘

] ( 𝑘
2

)𝜈
. (29)

In what follows, our notation is such that 𝜈 is positive. The solutions with Bunch-Davies initial
conditions are Hankel functions and the above expressions arise from the asymptotic behaviour of
Hankel functions [4, 10]. Here 𝑎 ®𝑘 and 𝑎†®𝑘 are annihilation and creation operators. They satisfy the
following commutation rule [

𝑎 ®𝑘 , 𝑎
†
®𝑘′

]
= (2𝜋)𝑑𝛿 (𝑑)

(
®𝑘 − ®𝑘 ′

)
, (30)

and act on the vacuum |0〉 as follows

𝑎 ®𝑘 |0〉 = 0, 𝑎†®𝑘 |0〉 = | ®𝑘〉, (31)

〈®𝑘 | ®𝑘 ′〉 = (2𝜋)𝑑𝛿 (𝑑)
(
®𝑘 − ®𝑘 ′

)
. (32)

As such 𝛼𝐿 ( ®𝑘) and 𝛽𝐿 ( ®𝑘) are operators at the late-time boundary of de Sitter which have nontrivial
commutation relations. 𝑁𝛼 and 𝑁𝛽 are the normalizations which we will now discuss. By checking
what happens to these solutions under dilatations one can identify that the scaling weights for 𝛼𝐿 ( ®𝑘)
and 𝛽𝐿 ( ®𝑘) are respectively 𝑐𝛼 = −𝜈 and 𝑐𝛽 = 𝜈 [4]. For the range 0 < 𝑚 < 𝑑

2𝐻 the late-time
operators correspond to complementary series representations.

With 𝑛+ normalization the intertwining operator and its inverse for 𝑙 = 0 in momentum space
are [6], [4]

for 𝑅𝑒(𝑐) < 0: 𝐺𝜒 : C𝜒̃ → C𝜒 with 𝐺+
{0,𝑐} (𝑘) =

(
𝑘2

2

)𝑐
, (33)

for 𝑅𝑒(𝑐) > 0: 𝐺 𝜒̃ : C𝜒 → C𝜒̃ with 𝐺+
{0,𝑐̃} (𝑘) =

(
𝑘2

2

) 𝑐̃
=

(
𝑘2

2

)−𝑐
. (34)

For 𝛽𝐿 ( ®𝑘) since 𝑐𝛽 = 𝜈 > 0 its shadow dual is obtained from

𝛽𝐿 ( ®𝑘) = 𝐺 𝜒̃𝛽
𝐿 ( ®𝑘), (35)

while for 𝛼𝐿 ( ®𝑘) with 𝑐𝛼 = −𝜈 < 0

𝛼𝐿 ( ®𝑘) = 𝐺𝜒𝛼̃
𝐿 ( ®𝑘). (36)

Defining Ω =
∫

𝑑𝑑𝑘

(2𝜋 )𝑑 〈®𝑘 | − ®𝑘〉 and demanding these operators be normalized up to a dirac delta
function, such that

1
Ω

(
O, Õ

)
=

1
Ω

∫
𝑑𝑑𝑘

(2𝜋)𝑑
〈0|O(®𝑘)Õ( ®𝑘) |0〉 !

= 1 (37)
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we obtain the following normalized late-time operators

𝛼𝐿
𝑁 ( ®𝑘) = −𝑖2𝜈/2

[
𝑎 ®𝑘 − 𝑎

†
− ®𝑘

]
𝑘−𝜈 (38)

𝛽𝐿𝑁 ( ®𝑘) = 2−𝜈/2
[
1 + 𝑖 cot(𝜋𝜈)
1 − 𝑖 cot(𝜋𝜈) 𝑎 ®𝑘 + 𝑎

†
− ®𝑘

]
𝑘𝜈 , (39)

and their shadows [10]

𝛼̃𝐿
𝑁 ( ®𝑘) = −𝑖2−𝜈/2𝑘𝜈

[
𝑎 ®𝑘 − 𝑎

†
− ®𝑘

]
, (40)

𝛽𝐿𝑁 ( ®𝑘) = 2𝜈/2𝑘−𝜈
[
1 + 𝑖 cot(𝜋𝜈)
1 − 𝑖 cot(𝜋𝜈) 𝑎 ®𝑘 + 𝑎

†
− ®𝑘

]
. (41)

The nontrivial commutation relations we mentioned above in passing are[
𝛽𝐿𝑁 ( ®𝑘), 𝛼𝐿

𝑁 ( ®𝑘 ′)
]
=

2𝑖
1 − 𝑖 cot(𝜈𝜋) (2𝜋)

𝑑𝛿 (𝑑) ( ®𝑘 + ®𝑘 ′) =
[
𝛽𝐿𝑁 ( ®𝑘), 𝛼̃𝐿

𝑁 ( ®𝑘 ′)
]
. (42)

At the level of states obtained from these operators by

|O(®𝑘)〉 ≡ O(®𝑘) |0〉, (43)

operators 𝛼𝐿
𝑁
( ®𝑘) and 𝛽𝐿

𝑁
( ®𝑘) lead to the same state

|𝛼𝐿
𝑁 ( ®𝑘)〉 = 𝑖2𝜈/2𝑘−𝜈 | − ®𝑘〉 = 𝑖 |𝛽𝐿𝑁 ( ®𝑘)〉, (44)

but at the level of operators they are not equal to each other and they do not commute either[
𝛽𝐿𝑁 ( ®𝑘), 𝛼𝐿

𝑁 ( ®𝑘 ′)
]
=

2𝑖
1 − 𝑖 cot(𝜈𝜋) 2𝜈𝑘−2𝜈 (2𝜋)𝑑𝛿 (𝑑) ( ®𝑘 + ®𝑘 ′). (45)

Similar argument also holds for 𝛼̃𝐿
𝑁
( ®𝑘) and 𝛽𝐿

𝑁
( ®𝑘).

Another example is the work of [11] where they construct field operators in position space
for the complementary series representations by incorporating the properties of the complementary
series inner product in the definition of position space annihilation and creation operators.

4. Composite states

In the previous section we were interested in irreducible representations. The irreducible
representations, as we saw in section 3, are induced by the subgroup 𝑃 = 𝑁𝐴𝑀 , the stability
subgroup of 𝐺 = 𝑆𝑂 (𝑑 + 1, 1). Irreducible representations involve functions that act on a single
point. The composite representations on the other hand, involve two noncoinciding points. The
stability subgroup of 𝑆𝑂 (𝑑 + 1, 1) acting on two noncoinciding points (𝑥1, 𝑥2), such that 𝑥1 ≠ 𝑥2,
on the Euclidean space is isomorphic to the subgroup 𝑀𝐴 (Lemma 9.1 in [6]). Thus the composite
representations are induced by the subgroup 𝑀𝐴. We would like to end our discussion with a brief
review of how composite reducible representations can be obtained from the irreducible ones. This
section mostly points out key features from chapter 9 of [6].

There are two complementary concepts one would like to understand of composite represen-
tations. One question is how to put together two irreducible representations into a representation.

9
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This is done via the Kronecker product, also known as tensor product, of irreducible representations.
The second question is how to reduce a given representation into its irreducible components. In
essence the tensor product involves functions of two entries from 𝐺 × 𝐺 that have values in the
product space V𝑙1 ⊗ V𝑙2 . The question of reduction on the other hand involves being able to
write functions that have a single argument from 𝐺 and values in a product space, where the main
endeavour is in understanding what this product space can be. We will discuss these two questions
in their separate sections.

4.1 The tensor product of two irreducible representations

Given two irreducible representations 𝜒1 = {𝑙1, 𝑐1} and 𝜒2 = {𝑙2, 𝑐2} that act on function
spaces C𝜒1 and C𝜒2 , the tensor product representation acts on the function space C1 ⊗ C2, let us
denote this product function space by C𝜒1⊗𝜒2 . This is a space of infinitely differentiable functions
f(𝑔1, 𝑔2) from 𝐺 × 𝐺 to V𝑙1 ⊗ V𝑙2 that satisfy the following covariance condition

tensor product covariance condition:
f(𝑔1𝑝1, 𝑔2𝑝2) =

[
𝐷𝜒1 (𝑝−1

1 ) ⊗ 𝐷𝜒2 (𝑝−1
2 )

]
f(𝑔1, 𝑔2) for 𝑝1, 𝑝2 ∈ 𝑀𝐴𝑁, 𝑔1, 𝑔2 ∈ 𝐺. (46)

Here 𝐷𝜒 (𝑝) is short hand for 𝐷𝜒 (𝑚𝑎) = |𝑎 |− 𝑑
2 −𝑐𝐷𝑙 (𝑚) that one can recognize in section 3. The

composite representation acts on these functions by the following homomorphism[
T 𝜒1⊗𝜒2 (𝑔)f

]
(𝑔1, 𝑔2) = f(𝑔−1𝑔1, 𝑔

−1𝑔2) with 𝑔, 𝑔1, 𝑔2 ∈ 𝐺, f ∈ C𝜒1⊗𝜒2 . (47)

There is again a unique correspondence between functions on group elements f(𝑔1, 𝑔2) and functions
on position space 𝑓 (𝑥1, 𝑥2) estabilished by the following identities [6]

to each (𝑥1, 𝑥2) ∈ R𝑑 × R𝑑such that 𝑥1 ≠ 𝑥2, corresponds a unique (𝑛̃𝑥1 , 𝑛̃𝑥2) ∈ 𝑁̃ × 𝑁̃ such that:
𝑓 (𝑥1, 𝑥2) = f(𝑛̃𝑥1 , 𝑛̃𝑥2) (48a)

to each 𝑔 ∈ 𝐺 corresponds a unique 𝑝(𝑥, 𝑔) ∈ 𝑀𝐴𝑁 defined by:
𝑔−1𝑛̃𝑥 = 𝑛̃𝑔−1𝑥 𝑝(𝑥, 𝑔)−1 (48b)

which are similar to those in (15), involved in the case of irreducible representations.
In the case of both 𝜒1 and 𝜒2 being in the principal series the composite representation is

unitary with respect to the following inner product [6]

( 𝑓1, 𝑓1) =
∫

𝑑𝑥1𝑑𝑥2〈 𝑓1(𝑥1, 𝑥2), 𝑓2(𝑥1, 𝑥2)〉, (49)

where this time 〈., .〉 is the 𝑀−invariant inner product on V𝑙1 ⊗ V𝑙2 .
A case where principal series representations of 𝑆𝑂 (𝑑+1, 1) appear is in the late-time behaviour

of free scalar fields on de Sitter that satisfy Bunch Davies initial conditions with masses in the range
𝑚 > 𝑑

2𝐻. One late-time operator among the principal series representations, normalized with
respect to the principal series inner product is [10]

𝛼𝐻
𝑁 ( ®𝑘) =

√︁
𝜌𝜋𝑠𝑖𝑛ℎ(𝜌𝜋)

[
−𝑖Γ(𝑖𝜌)

𝜋
𝑒−𝜌𝜋𝑎 ®𝑘 +

1
𝑠𝑖𝑛ℎ(𝜌𝜋)Γ(1 − 𝑖𝜌) 𝑎

†
− ®𝑘

] (
𝑘

2

)−𝑖𝜌
, (50)

where 𝜌2 =
𝑚2

𝐻2 − 𝑑2

4
. (51)

10
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Our notation is such that 𝜌 denotes the positive root. The scaling weight for this representation is
𝑐𝛼 = −𝑖𝜌. We can again build a state by acting on the vacuum with this operator

| − 𝑖𝜌, ®𝑘〉 ≡ |𝛼𝐻
𝑁,𝑖𝜌 ( ®𝑘)〉 ≡ 𝛼𝐻

𝑁 ( ®𝑘) |0〉 (52)

=

(
𝑘

2

)−𝑖𝜌 √︂
𝜌𝜋

𝑠𝑖𝑛ℎ(𝜌𝜋)
1

Γ(1 − 𝑖𝜌) | −
®𝑘〉. (53)

The tensor product operator 𝛼𝐻
𝑁,𝑖𝜌1,𝑖𝜌2

( ®𝑘1, ®𝑘2) ≡ 𝛼𝐻
𝑁,𝑖𝜌1

( ®𝑘1) ⊗𝛼𝐻
𝑁,𝑖𝜌2

( ®𝑘2) gives rise to the following
composite state

|𝑖𝜌1, ®𝑘1; 𝑖𝜌2, ®𝑘2〉 ≡ 𝛼𝐻
𝑁,𝑖𝜌1

( ®𝑘1) |0〉 ⊗ 𝛼𝐻
𝑁,𝑖𝜌2

( ®𝑘2) |0〉 (54)

=
𝜋√︁

𝑠𝑖𝑛ℎ(𝜌1𝜋) sinh(𝜌2𝜋)

√
𝜌1𝜌2

Γ(1 − 𝑖𝜌1)Γ(1 − 𝑖𝜌2)

(
𝑘1
2

)−𝑖𝜌1 ( 𝑘2
2

)−𝑖𝜌2

| − ®𝑘1;− ®𝑘2〉.

(55)

Noting that Γ(1 + 𝑖𝜌)Γ(1 − 𝑖𝜌) =
𝜋𝜌

𝑠𝑖𝑛ℎ (𝜋𝜌) , this product state is normalizable upto a dirac-delta
function

〈𝑖𝜌1, ®𝑘1; 𝑖𝜌2, ®𝑘2 |𝑖𝜌1, ®𝑘 ′1; 𝑖𝜌2, ®𝑘 ′2〉 = 〈−®𝑘1;−®𝑘2 | − ®𝑘 ′1;−®𝑘 ′2〉 = (2𝜋)2𝑑𝛿𝑑 ( ®𝑘1 − ®𝑘 ′1)𝛿
𝑑 ( ®𝑘2 − ®𝑘 ′2). (56)

Thus we have a composite state normalized with respect to the inner product for composition of
two principal series representations (49) as

(
𝛼𝐻
𝑁,𝑖𝜌1,𝑖𝜌2

, 𝛼𝐻
𝑁,𝑖𝜌1,𝑖𝜌2

)
=

1
Ω2

∫
𝑑𝑑𝑘1

(2𝜋)𝑑
𝑑𝑑𝑘2

(2𝜋)𝑑
〈𝑖𝜌1, ®𝑘1; 𝑖𝜌2, ®𝑘2 |𝑖𝜌1, ®𝑘 ′1; 𝑖𝜌2, ®𝑘 ′2〉 = 1. (57)

4.2 Reduction of a composite representation

To reduce a given representation on 𝐺 into irreducible ones, one needs a map from 𝐺 to a
product of V𝑙. Such a map happens to exist, as

𝑄 : 𝐺 → V𝑙1 ⊗ V𝑙2 . (58)

This map involves the Weyl inversion 𝑤 and is defined by [6]

[𝑄f] (𝑔) = f(𝑔, 𝑔𝑤). (59)

11
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The Weyl inversion3 is based on reflection of the 𝑑𝑡ℎ-axis by

Weyl inversion: 𝑤𝑥 =
𝜃𝑥

𝑥2 , where 𝜃 : reflection of 𝑥𝑑 . (64)

From the perspective of reducing representations on 𝐺 into a product of irreducible representations
we are dealing with functions f(𝑔, 𝑔𝑤). From the perspective of the Kronecker product of irreducible
representations we expect these f(𝑔, 𝑔𝑤) functions to satisfy the covariance condition (46) on
f(𝑔1, 𝑔2) as if the map 𝑄 acted on f(𝑔, 𝑔). Moreover we mentioned that composite representations
are induced by the subgroup 𝑀𝐴. The function f(𝑔, 𝑔𝑤) subject to the tensor product covariance
condition should schematically work as

f(𝑔𝑚𝑎, 𝑔𝑚𝑎𝑤) = [. . . ] f(𝑔, 𝑔𝑤). (65)

To discover the [. . . ] part, making use of the properties of the Weyl inversion, one can rewrite the
second argument as follows

𝑔𝑚𝑎𝑤 = 𝑔𝑚𝑤𝑎−1 = 𝑔𝑤𝑚𝑤𝑎−1 (66)

Then via the covariance condition (46)

f(𝑔𝑚𝑎, 𝑔𝑤𝑚𝑤𝑎−1) =
[
𝐷𝜒1

(
(𝑚𝑎)−1

)
⊗ 𝐷𝜒2

(
(𝑚𝑤𝑎−1)−1

)]
f(𝑔, 𝑔𝑤) (67)

= |𝑎 |𝑐1−𝑐2

[(
𝐷𝑙1 (𝑚)

)−1
⊗
(
𝐷𝑙2 (𝑚)

)−1
]
f(𝑔, 𝑔𝑤). (68)

Notice that because of the Weyl inversion involved the representation 𝜒2 = {𝑙2, 𝑐2} works in via
{𝑙2,−𝑐2}. The map 𝑄 is invertible and it is also an intertwining map. Defining

𝐿 (𝑚𝑎) = |𝑎 |𝑐2−𝑐1
[
𝐷𝑙1 (𝑚) ⊗ 𝐷𝑙2 (𝑚)

]
. (69)

we have a space of infinitely differentiable functions

𝐹 : 𝑔 → V𝑙1 ⊗ V𝑙2 , (70)

with covariance property

covariance condition for 𝑀𝐴 induced representations:
𝐹 (𝑔𝑚𝑎) = 𝐿 (𝑚𝑎)−1𝐹 (𝑔). (71)

3As listed in [6] chapter 4, Weyl inversion acts on dilatations 𝑎 ∈ 𝐴 as

𝑤−1𝑎𝑤 = 𝑤𝑎𝑤−1 = 𝑎−1, (60)

and on rotations 𝑚 ∈ 𝑀 as

𝑚𝑤 ≡𝑤𝑚𝑤−1 = 𝑤−1𝑚𝑤 = 𝜃𝑚𝜃 where 𝑚𝑤 ∈ 𝑀 for𝑚 ∈ 𝑀, (61)

𝐷𝑙 (𝑚𝑤) = 𝐷𝑙 (𝑚). (62)

The subgroups of translations (𝑁̃) and special conformal transformations (𝑁) are conjugate to each other under Weyl
transformations such that

𝑤−1𝑛𝑏𝑤 = 𝑤𝑛𝑏𝑤
−1 = 𝑛̃𝑏′ where 𝑏′ = (𝑏1, . . . , 𝑑𝑑−1,−𝑏𝑑). (63)

The elements 𝑤 and the identity together make up the finite group of order two, the Weyl group.
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This function space is denoted as𝑄(C𝜒1 ⊗C𝜒2) [6]. A representation that acts on this space is given
by the following homomorphism

[T (𝑔)𝐹] (𝑔′) = 𝐹 (𝑔−1𝑔). (72)

In the case of purely imaginary 𝑐1 − 𝑐2, the well defined inner product is [6]

(𝐹1, 𝐹2) =
∫

𝑑𝑛𝑑𝑛̃〈𝐹1(𝑛̃𝑛), 𝐹2(𝑛̃𝑛)〉, (73)

which is preserved by 𝑄,

(𝑄𝐹1, 𝑄𝐹2) = (𝐹1, 𝐹2) for 𝜒1, 𝜒2 in principal series. (74)

In general dimensions, [12] states that tensor products involving only scalars are reduced in
terms of principal series representations only. The absence of discrete series representations in the
decomposition is explained in connection to the inequivalence of discrete series representations
and their mirror images. In two dimensions, with the 𝑆𝐿 (2, 𝑅) representations the situation is a bit
different and even the tensor product of two principal series representations involve discrete series
representations, stated by Theorem 4.6 in [13]. More recent literature that considers interactions
for principal series fields, with the purposes of exploring the operator product expansion for a dual
conformal field theory are [? , OPE]
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