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Geodesics, complexity and holography in (A)dS2 Damián A. Galante

1. Introduction

The aim of this short note is to summarise some recent progress in trying to understand
the holographic nature of the cosmological event horizon in de Sittter (dS) space, the maximally
symmetric solution to Einstein’s equations with a positive cosmological constant. See [1, 2] for
reviews. The metric of dS space in d dimensions is given by,

ds2 = −dτ2 + `2 cosh2
( τ
`

)
dΩ2

d−1 , (1)

where ` is the radius of dS and τ is the global time coordinate, and dΩd−1 is the metric on the
(d −1)-unit sphere. From now onwards, we will set ` = 1. Due to the ever-accelerated expansion of
the spacetime and the finite speed of light, observers in dS are surrounded by a cosmological event
horizon. In fact, the region that is causally accesible to an observer in a dS space is called the static
patch and is given by

ds2 = −(1 − r2)dt2 +
dr2

1 − r2 + r2dΩ2
d−2 . (2)

Note the appearance of a horizon at rh = 1. Given that the AdS/CFT correspondence has proven
to be a fundamental tool to understand black hole event horizons, we would like to apply the same
tools to the case of the cosmological horizon.

However, one of the main problems in doing so is that the static patch region does not have any
asymptotically-large region where to anchor observables, as in the AdS case. The radial coordinate
r in eq. (2) goes from r = 0 at the observer’s worldline to r = 1 at the horizon, while the usual
radial coordinate in AdS goes to r →∞, as it reaches the AdS boundary.

This problem was recently overcome by the construction of the centaur geometry [3, 4], a
two-dimensional geometry that is asymptotically AdS but, in the interior, it interpolates to part of
a dS static patch with a cosmological horizon. This construction opens the possibility of using the
usual tools used in holography to probe the cosmological horizon, see next section.

One of such probes are spacelike geodesics. These are interesting for a variety of reasons. Even
before going into holography, geodesics are useful tools to compute two-point functions in curved
spacetimes. Consider a free massive scalar field φ with mass m in a fixed curved background.
Following the worldline formalism, one can schematically compute the two-point function for the
scalar field by doing the following path integral,

〈φ(x)φ(x ′)〉 =
∫

DPe−mL[P] ≈
∑

geodesics
e−mLg , (3)

where we need to path-integrate over all possible paths P connecting the two points and L[P] is
the length of that path [5]. The last expression is the saddle-point approximation when m → ∞
and the length reduces to the geodesic length Lg. In this limit, essentially, computing the length of
geodesics gives (the logarithm of) the two-point function of the scalar field.

In the case where the spacetime is asymptotically AdS, one can further connect this two-point
function to the conformal two-point function of boundary operators. This was initially computed
in [5, 6] for AdS3, finding agreement with CFT expectations.
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In the case of dS, the two-point function is known analytically in every dimension and for any
mass of the scalar field. In the Bunch-Davies vacuum, the exact two-point function is given by
[1, 2],

〈φ(x)φ(x ′)〉dS =
Γ(h+)Γ(h−)

(4π)d/2Γ
(
d
2

) 2F1

(
h+, h−;

d
2

;
1 + P

2

)
, h± =

(d − 1)
2
±

√(
d − 1

2

)2
− m2 , (4)

where P is defined in embedding coordinates as P = ηi jX iX ′j , with X being the coordinates of x
in (d + 1)-Minkowski spacetime. In d = 2, when the two points are located at the south and north
pole of the circle at a given time t, and, in the large-mass limit, this expression reduces to [7]

〈φN (t)φS(t)〉dS2 ≈
e−mπ

2

√
2

mπ sinh 2t
sin (2mt + π/4) . (5)

It would be interesting to reproduce this two-point function from a geodesic calculation in dS space.
See comments in the next section.

Geodesics also appear in a variety of contexts in holography. For instance, in d = 3, they are
co-dimension two extremal surfaces, and as such, they compute entanglement entropies through
the Ryu-Takayanagi formula [8]. In most of this note, we will be interested in the case of d = 2,
where geodesics are co-dimension one. These objects are conjectured to compute a holographic
complexity via the relation [9, 10],1

CV = max
Lg

GN
, (6)

where GN is the Newton’s constant. In the dual quantum theory, this measure gives some notion of
how hard is to construct the quantum state, given a reference state and a set of simple operations.
See [11] for a recent review.

In the next section, we will show how to compute the length of spacelike geodesics in AdS2,
dS2 and the centaur geometry and interpret the results in view of the aforementioned quantum
measures.

2. Geodesics

It is a simple exercise to compute geodesics in two-dimensional spacetimes. In particular, we
will be interested in spacetimes with a metric given by

ds2 = − f (r)dt2 +
dr2

f (r)
= − f (r)dv2 + 2dvdr , (7)

where in the last equality we introduced the null coordinate dv ≡ dt + dr/ f (r). Usually these
metrics can be extended to two-sided geometries and we will be interested in computing geodesics
that are anchored at opposite sides of the Penrose diagram. See fig. 1. The isometries of our
geometries imply that the length is invariant under the following change of the boundary times

1The V subscript refers to volume in d-dimensions but in d = 2 this is actually the geodesic lengh.
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tR → tR +∆t and tL → tL −∆t and hence only depends on the combination tL + tR. For simplicity,
we will assume a symmetric configuration of the boundary times, tL = tR = t/2. We refer the
reader to [12] for details on the computations. In this section, we will just state the main results.
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Figure 1: Generic Penrose diagram for the geometries under consideration. The boundary r = Rb is
indicated by a dashed black line. The times tL = tR run upwards along both boundaries. We have also
illustrated a geodesic with turning point rt . Figure adapted from [12].

The geodesics can be studied using the following length functional,

L =
∫

ds
√
− f (r)Ûv2 + 2Ûv Ûr , (8)

where both coordinates r and v are written in terms of a parameter s and the dot indicates derivative
with respect to s. It is straightforward to verify that the length does not depend explicitly on v, so
we can defined a conserved quantity P ≡ − f Ûv + Ûr , associated to this symmetry. The length and the
time at which the geodesics are anchored can be both written in terms of this parameter P as,

L(P) = 2
∫ Rb

rt

dr√
f (r) + P2

, t(P)/2 = r∗t − r∗(Rb) +

∫ Rb

rt

dr

(√
f (r) + P2 − P

f (r)
√

f (r) + P2

)
, (9)

where rt is the position of the turning point, given by f (rt ) + P2 = 0, see fig. 1. Rb is a point close
to boundary (or worldline in the case of dS) and the tortoise coordinate is defined by dr∗ = dr/ f (r).
For a given f (r), eq. (9) gives both the length and the time as a function of P. At least parametrically,
this gives the length as a function of the time they are anchored at. Furthermore, if t(P) can be
inverted, then we can get an explicit expression for L(t).

2.1 Geodesics in (A)dS2

We can now specify f (r) to obtain specific expressions for the different geometries. We start
with the case of the AdS2 black hole, which is given by f (r) = r2−1. We are fixing here the inverse
temperature to β = 2π. This problem has been studied in [13]. It is known that geodesics in this
spacetime are the geodesics of global AdS2 anchored at the same time, so they are horizontal lines
in the Penrose diagram, see fig. 2(a). Performing the integrals (9) and restoring the dependence on
β, we obtain that in this case,

L(t)BH = 2 arccosh
(√
(R2

b
− 1) cosh2 πt

β
+ 1

)
∼ 2 log

(
2Rb cosh

πt
β

)
+O(1/R2

b) . (10)
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The length, as usual in AdS, diverges due to contributions close to the boundary, so we regulate it
with a cutoff Rb � 1. For short times, we find that the length behaves as L(t) ∼ (t/β)2, while for
t/β � 1, then L(t) ∼ t/β. The three key properties of the geodesic length in the AdS black hole
case are:

1. Geodesics exist for arbitrarily long times.

2. The length of the geodesics always increases with time.2

3. After a short period of time of order β, the length increases linearly with time.

These three facts are some of the features that motivated the conjecture that the length of these
geodesics is measuring the complexity holographically. Moreover, the linear growth is taken as an
indication of the chaotic nature of the underlying microscopic theory [9, 10].

Out[]=

(a) AdS2 black hole.

Out[]=

(b) dS2.

Figure 2: Penrose diagrams for the AdS2 black hole and (half of) dS2. Geodesics are plotted in blue and Rb = 10 is in
dashed black in the AdS case. The red lines correspond to the horizons. Figure from [12].

This picture sharply contrasts with the geodesics in dS2. In this case, we have that f (r) = 1−r2.
Evaluating the integrals (9) in this case, we obtain a completely different behaviour, shown in fig.
2(b), that can be summarised as follows,

L(t = 0)dS = π . (11)

As in the case of the AdS black hole, there is an infinite set of geodesics, parameterised by the
continuous parameter P, but in this case,

1. All the geodesics are anchored at t = 0. There are no real, finite-length geodesics at t , 0.

2. The length of all the geodesics is the same and equal to half the length of the circle at t = 0,
i.e., L = π. It is interesting to note that the last geodesics are almost null everywhere but they
touch the future/past infinites at a single point, giving a finite length of π.

2See [14] for saturation at time scales of order eS0 , where S0 is the zero-temperature entropy.
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3. Of course, there is no linear growth.

This result is somehow expected from the embedding space picture, where geodesics can be found
as intersections of the dS hyperboloid with planes that pass through the origin. Nevertheless, it
poses an interesting set of challenges. First, the two-point function in dS2 at finite times is not zero,
see eq. (5). So, according to the saddle-point approximation, we should be able to obtain it from a
sum over geodesics, but there are no real geodesics. The oscillatory nature of the correlator would
suggest that instead we should be considering complex geodesics. It would be interesting to find
those and make a precise match with the two-point function. This would also open the interesting
question of what is the role of these complex geodesics, if any, in holography. The second challenge
is the interpretation of these geodesic lengths in terms of holography and complexity, but for that,
we will embed dS inside AdS and compute the geodesics in the centaur geometry.

2.2 Geodesics in the centaur geometry

The spacetime in this case is given by

f (r)centaur =

{
(1 − r2) , −∞ < r < 0 ,
(1 + r2) , 0 < r < ∞ .

(12)

The geometry interpolates sharply between AdS for r > 0 to dS for r < 0. At r = 0, the Ricci
curvature jumps from R = +2 to R = −2. There exist completely smooth interpolating spacetimes
where the curvature changes smoothly in a region of size ε � 1, so this discontinuity in R is not
problematic (see [3]). This geometry can be seen as a solution of a dilaton-gravity theory with
dilaton potential U(φ) = 2|φ|. It can be shown that it also satisfies the null energy condition if
viewed from a higher-dimensional perspective [15]. For other interesting features of the centaur
geometry, see [3, 4].

For the purpose of this note, it is sufficient to remark that the geometry has an AdS boundary,
so we can interpret the geodesics in this case in terms of holography.

The geodesics can be seen in fig. 3(a). As in the previous subsection, there exists a one-
parameter family of geodesics. They exhibit some interesting features. As can be seen in fig. 3(b),
a geodesic anchored at a positive time, goes through the past horizon, instead of the future horizon,
as it is in the black hole case. This is a direct consequence of the fact of having dS in the interior
and its holographic meaning remains to be understood.

The length of these geodesics as a function of the boundary time is given by

L(t)centaur = π + 2 arcsinh ©«
√
(R2

b
+ 1) cos2

(
πt
β

)
− 1 ª®¬ = π + 2 log

(
2Rb cos

πt
β

)
+O(1/R2

b) , (13)

where we restored the β-dependence. Note that the factor of π comes from the length of the part
of the geodesics inside the dS patch. The last geodesic is, again, null everywhere and its length is
given by π.3

Compared to the black hole case, this result is strikingly different — see fig. 4:

3This might be confusing by looking at eq. (13) close to t/β = 1/2, but this equation is only valid for Rb−tan π |t |/β >
0. See [12].
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Out[]=

(a) Many geodesics.

Out[]=

(b) One geodesic anchored at a t > 0.

Figure 3: Penrose diagrams for the centaur geometry and geodesics anchored at different boundary times in blue,
spanning the full range of times for which smooth spacelike geodesics of finite length exist. The dashed black line is the
cutoff surface with Rb = 10. The dark blue dashed line is the interpolating line between the two geometries at r = 0.
The red lines correspond to the horizons and the green ones correspond to r → −∞. Figure from [12].

1. There only exist real, finite-length geodesics for a short period of time of order β.

2. The length decreases with time.

3. There is no linear growth.

Both in terms of complexity or two-point correlator, the fact that the length decreases with time,
points towards the idea that correlations in dS increase with time. This contrasts with the dissipative
nature of black hole horizons where correlations decrease (exponentially) as time increases. After
a time of order β, the geodesics reach the future/past infinity and then all real geodesics would have
infinite length. As in the case of dS, there might be other complex geodesics in the centaur that
would be interesting to find and characterise.

3. Outlook and discussion

As can be seen, the behaviour of geodesics in dS is both qualitatively and quantitatively different
to those in AdS black holes.

For the black hole horizon, the linear growth in the geodesic length was associated to the
maximally chaotic nature of the microscopic quantum theory [16]. In chaotic large N theories,
there are two time-scales, that are parametrically large separated: the first one is dissipation time
(given by β and associated to the exponential decay of two-point functions), and the second one
is the scrambling time tS ∼ β log N . Between these two scales, the behaviour of the four-points
out-of-time-ordered correlator (OTOC), also supports the idea of maximal quantum chaos with [17]

〈OTOC〉BHβ = b0 −
b1
N
exp

(
2π
β

t
)
+ · · · , (14)

7
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Figure 4: The length of geodesics as function of time for the AdS2 black hole (in blue) and for the centaur
geometry (in yellow). Rb = 100. Note that the length in the centaur case decreases with time up to times of
t/β ∼ 1/2, after which there are no more real geodesics with finite length. The last geodesic has length π
that is shown in a dashed line. In contrast, the black hole length increases linearly with time for long times.

where b0,1 are positive, order-one constants. This correlator can also be computed in the centaur
geometry [4] giving

〈OTOC〉centaurβ = c0 −
c1
N

cos
(
2π
β

t
)
+ · · · , (15)

where c0,1 are order-one constants. So, again the dS horizon does not seem to behave as chaotically
as the black hole horizon. It is even hard to define a scrambling time in the centaur case, as the
OTOC oscillates with time.

Both the geodesics and the OTOC point towards a different microscopic realisation of the
cosmological horizon. In the case of the centaur, the holographic setup supports the idea of a
microscopic RG flow in terms of SYK-like models [15]. Similar ideas were suggested in [18],
where the dual theory to dS lives in the stretched horizon. The geodesic length in that case grows
fast in a short period of time after it reaches future infinity. That rapid growth was said to be
hyperfast – see also [19] – and it was suggested that an SYK model in a particular double-scaled
limit might accomplish that kind of growth microscopically.

Finally, it would be interesting to consider the higher-dimensional case. Holographic com-
plexities in dSd computed from the stretched horizon were recently considered in [20]. In the case
of the centaur, the flows from dSd to AdSd cannot be supported by matter obeying the null-energy
condition [21]. However, it is possible to build flows from dSd to AdS2xSd−2 that do obey the
null energy condition [22]. This is yet another indication that the microscopic realisation of the
cosmological horizon might be of a more finite nature.
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