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In this work, we compare the first C-moments of the multiplicity distributions recently measured
in proton-proton collisions at the LHC with the predictions of the Bialas-Praszalowicz model. In
this model the multiplicity distribution is given by a negative binomial distribution (NBD). In our
comparison, we try to identify the regions of the phase space where the NBD fails. We divide
the data into three sets according to their phase space coverage: I: pT > 100 MeV and |η | < 0.5;
II: pT > 100 MeV and |η | < 2.4 and II: pT > 500 MeV and |η | < 2.4. The mean multiplicity
grows with the energy according to a power law and the power is different for each set. The Cn

moments grow continuously with the energy, slowly in set I and faster in the other sets. We find
that the NBD gives a very good description of the measured moments C2, C3 and C4 and slightly
overestimates C5 in all data sets. The negative binomial parameter k decreases continuously with
the energy and there is no sign of change in this behavior.
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1. Introduction

It is well known [1, 2] that multiplicity distributions measured in proton-proton collisions at
energies up to

√
s = 0.54 TeV can be well described by a negative binomial distribution (NBD),

which is defined by two parameters 〈n〉 and k. Deviations from the NBD were discovered at
√

s = 0.9 TeV and later confirmed at the Tevatron at
√

s = 1.8 TeV. More recently, these deviations
were also observed at the LHC at

√
s = 7 TeV [3]. In this work we check whether deviations from

the NBD predictins appear in the Cn moments of the multiplicity distribution moments measured
at LHC energies up to 13 TeV.

We use the Bialas - Praszalowicz (BP) Model [4]. In this model multiparticle production is a
two-step process, in which particle sources are produced following a certain distribution function
and then each source emits particles according to a Poisson distribution. The final particle number
distribution is NBD. With the BP model it is easy to find analytical expressions for the first Cn

moments.
In the most recent experimental papers, the multiplicity distributions P(n) were presented but

the moments Cn were not. In [5] we computed the moments from the multiplicity tables, which we
took from the hepdata.net databasis.

The predictions of the BP model will be compared with the most recent data from the LHC on
non single diffractive pp collisions, which can be grouped into three sets:

• Set I: pT > 100 MeV, |η | < 0.5, and energies
√

s = 900, 2360 and 7000 GeV.

• Set II: pT > 100 MeV, |η | < 2.4, and energies
√

s = 900, 7000, 8000 and 13000 GeV.

• Set III: pT > 500 MeV, |η | < 2.4, and energies
√

s = 900, 7000, 8000 and 13000 GeV.

These data sets may contain particles produced through different production mechanisms. The
particles measured in set I are produced mainly from gluons; those measured in set II come also
from the fragmentation region (larger rapidities) and hence are produced also from the valence
quarks. Due to the larger transverse momentum cut-off, set III contains more particles which are
produced perturbatively. These differences might lead to a different behavior of the multiplicity
distributions.

2. The Bialas - Praszalowicz Model

In the BP model the multiplicity distribution is given by:

PBP(n) =

∞∫
0

dt F(t) e−n̄t
(n̄t)n

n!
with F(t, k) =

kk

Γ(k)
tk−1e−kt (1)

where t is a fraction of the average multiplicity, and F(t) the distribution of sources that contribute a
fraction t to the multiplicity. With the above choice for F, PBP turns out to be the negative binomial
distribution (NBD). Moreover, for this choice of F we have 〈n〉 = n̄. Distribution (1) depends on
one parameter k, which depends on the collision energy. The analysis of lower energy data shows
that k decreases with increasing energy. When k = 1 the probability distribution PNBD becomes
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a geometrical distribution. When k is large (1/k → 0), the distribution PNBD tends to a Poisson
distribution. The mean multiplicity is an input to calculate PNBD and can be parametrized as [5] :

〈n〉 =

(
s

q2
0

)∆
(2)

In [5] we fixed q0 and ∆ from the fit of the available experimental data and the results are shown in
Table 1. The data of sets I and II have the same lower pT cut and very different rapidity coverage. In
set I, we observe particles produced in the central (rapidity) region, which is dominated by gluons.
In set II there is a larger contribution coming from the fragmentation region, where the valence
quarks play an important role in particle production. The separation of central and fragmentation
regions was shown to be relevant for particle production in [6]. In the fragmentation region partons
from the projectile and from the target collide in a very asymmetric kinematical configuration. Data
in this region of the phase space are more sensitive to the low-x QCD dynamics and to saturation
effects, which tame the growth of several observables [7] with the energy. Probably the weaker
energy dependence of the data of set II is a manifestation of low x saturation effects.

Set ∆ q0 (GeV)
I 0.13 6.31
II 0.11 0.01
III 0.16 4.83

Table 1: Parameters q0 e ∆.

The moments are defined as:
Cm =

〈nm〉
〈n〉m

(3)

In the BP model the moments are obtained from (1). The first moments, C2 and C3 are given by:

C2 =
1
〈n〉
+ 1 +

1
k
→

1
k
= C2 − 1 −

1
〈n〉

. (4)

C3 = C2(2C2 − 1) −
C2 − 1
〈n〉

(5)

The expressions for C4 and C5 can be found in [5]. All the moments are functions only of C2 and
〈n〉.

3. Results and discussion

In order to calculate the Cn moments, we need to know k to compute the moment C2 and then
all the other moments. Instead of choosing values for k, we follow [4] and parametrize C2 as

C2 = a + b log(
√

s[GeV]) (6)

Next, we fit C2 to the data, fixing a and b, and finally we calculate k using (4). The obtained
values (a, b) are (1.68 , 0.02) for Set I; (0.97 , 0.08) for Set II and (1.30 , 0.06) for Set III. Having
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Figure 1: Cn moments. Solid lines: BP model. a) C2 and C3. Set I. b) C4 and C5. Set I. c) C2 and C3. Set
II. d) C4 and C5. Set II. e) C2 and C3. Set III. f) C4 and C5. Set III.

determined the parameters a and b, we can calculate all the first C moments, compare them with
data and make predictions. This is shown in Fig. 1, where we compare the BP moments with the
three data sets. Looking first at the data (which were put together for the first time in [5]) we observe
that in all figures the moments grow with the energy. The moments from set I grow much slower
and are even compatible with a constant value. Comparing the moments obtained with sets II and
III we see that the Cn’s grow with energy in the same (strong) way. Having fitted < n > and C2 we
may return to (4) and plot 1/k as a function of

√
s. This was done in [5] where it was found that

1/k is an increasing function and there is no sign of a different behavior. This result extends the
conclusions found ten years ago in [4] to the present energies, which are two times higher.
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Now we come back to question formulated in the title. With a negative binomial distribution
(derived from the BP model) and assuming a logarithmic growth (6) of C2 moment, we were able
to reproduce the first multiplicity moments over a wide range of energies for different rapidity
intervals. Large deviations from the NBD predictions might be observed for higher order moments.
This conclusions is in line with the results found in [3], where the single NBD was shown to deviate
from the measured multiplicity distributions only for very large values of n (where P(n) is three
orders of magnitude smaller than its maximum value).

To summarize: for practical purposes the single NBD captures the main features of the
multiplicity distributions even at the highest LHC energies. Discrepancies appear only at the tails
of these distributions. NBD is not so bad!

A final remark: the growth of C2 with energy can be translated through (4) into a decrease
of the parameter NBD k. This behavior is consistent with lower energies and does not exhibit the
change predicted in [8].
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