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1. Introduction

In the realm of relativistic quantum mechanics, the Dirac equation appears as a first order
equation with a four-component spinor as a wave function, while the Klein-Gordon equation, being
of second order, has only a single-component wave function. The pertinent question immediately
arises: why must the Dirac equation possess a four-component wave function? One may promptly
answer that the four components exist to account for the two possible spin projections, and two
more for the antiparticle. However, the Klein-Gordon equation, while not having to account for
spin projection, houses both particle and antiparticle states in a single component, but on the other
hand, being a second order equation.

In a 1958 paper [1], Feynman and Gell-Mann propose, in this spirit, a second-order formulation
of the Dirac equation, having two-component spinors as wave functions, which is now known as
the Feynman–Gell-Mann formulation [2–9]. In this work, we look into the relativistic energy levels
of a particle immersed in a stationary and homogeneous magnetic field using this formulation.
The levels are obtained by expressing the spinor as an eigenstate of operators such that the radial
functions obey uncoupled second order differential equations, which can bemapped into the singular
harmonic oscillator in the non-relativistic theory.

2. The Feynman–Gell-Mann formulation

The Dirac equation for a fermion of mass m and electric charge q in 3+1 dimensions with a
minimally coupled vector interaction is written (with ~ = c = 1) as

[γµ(pµ − qAµ) − m]Ψ = 0 , (µ = 0, 1, 2, 3) , (1)

where pµ = i∂µ is the canonical momentum operator, Aµ = (A0,−A) is the potential, and
γµ are the gamma matrices which satisfy the Clifford algebra {γµ, γν} = 2gµν, where gµν =

diag (1,−1,−1,−1) is the Minkowski metric tensor.
To construct the second order equation, we exploit the convenient properties of the chirality

operator, which in the standard representation is defined as γ5 ≡ iγ0γ1γ2γ3. We now construct the
chiral projections Ψ(λ) ≡ PλΨ, where

Pλ =
1 + λγ5

2
, λ = ±1 , Pλγ

µ = γµP−λ. (2)

One may easily discover that the chiral projection of a Dirac spinor is exactly the eigenstate of
the chiral operator, which has a convenient relation between its upper and lower components

γ5
Ψ
(λ) = λΨ(λ) , Ψ

(λ) =
©­«
Φ(λ)

λΦ(λ)

ª®¬ . (3)

Nowwe are set to build the second order equation. Applying P−λ to (1), we obtain a relationship
between both chiral projetctions, allowing us to write Ψ in terms of Ψ(λ) only. Then, we simply
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substitute it in (1), obtaining a second order equation for the chiral projection, which itself leads to
the sought equation for a two-component spinor

[(pµ − qAµ)(pµ − qAµ) − m2 + qσ · (B − iλE)]Φ(λ) = 0, (4)

such that

Ψ =
©­«
Φ(λ) + Φ(−λ)

λ(Φ(λ) − Φ(−λ))

ª®¬ . (5)

3. A stationary and homogeneous magnetic field

Using the cylindrical coordinates system (r, θ, x3), we are interested in investigating the mag-
netic field B = (0, 0, B). For this field, the axially symmetric gauge will serve, such that our potential
will be A0 = 0, A = (0, Br/2, 0). Actually, the radial component of A could be any function as
it does not contribute to the magnetic field. Considering a non-zero value for it would only add
a phase factor to the spinor, which doesn’t affect the physics, so the easiest choice for it is simply
zero.

Since the potential is time-independent, we can factorize the time dependence in the spinor, and
as the particle is free in the x3-axis, the spinor can be written as eigenstate of the third component
of momentum, spin and total angular momentum operators, respectively:

p3Φ
(λ) = k3Φ

(λ) , k3 ∈ R

s3Φ
(λ) =

s
2
Φ
(λ) , s = ±1

j3Φ(λ) = κΦ(λ) , κ = l +
s
2
= ±

1
2
,±

3
2
, ....

(6)

where l is the third-component of the angular momentum L3 eingenvalue.
We can now build the spinor by using the eigenstates of L3 and s3. Since s3 is Hermitian,

its eigenstates form a basis for the two-component spinors. Since there are not any electric fields
involved, from (4), we already know that Φ(λ) = Φ(−λ), therefore there is no need to keep carrying
the λ label anymore. Finally, we arrive at the explicit form of the two-component spinor which will
lead us to

ϕ
(s)
κ (r, θ) =

1
2
√

r

©­­­«
1 + s

2
f (+)κ (r)Θκ− 1

2
(θ)

i
1 − s

2
f (−)κ (r)Θκ+ 1

2
(θ)

ª®®®¬ (7)
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d2 f (s)κ

dr2 +

[
−

(
qB
2

)2
r2 −

κ(κ − s)
r2 + ε

(s)2

κ

−m2 + qB
(
κ +

s
2

)]
f (s)κ = 0,

(8)

with radial probability density equal to ρ =
��� f (s)κ

���2 /r . Equation (8) is similar to the radial equation
for a spherical harmonic potential in Schrödinger’s equation [10]

d2U
dr2 +

[
−

(
Mω

~

)2
r2 −

S2 − 1/4
r2 +

2ME
~2

]
U = 0, (9)

where M , ω are positive parameters and S ≥ 0. The eigenfunctions and respective eigenvalues,
considering

∫ ∞
0 dr |U |2 < ∞, are

UnrS = AnrSr
1
2+Sexp

(
−

Mω

2~
r2

)
L(S)nr

(
Mω

~
r2

)
, (10)

EnrS = ~ω (2nr + 1 + S) , (11)

in which nr = 0, 1, 2, 3, ... Since U is square integrable, we can directly map its eigensolutions to
our problem, leading to

f (s)nr κ = A(s)nr κr
1
2+|κ−

s
2 |exp

(
−

qBr2

4

)
L(|

κ− s
2 |)

nr

(
qB
2

r2
)

(12)

ε
(s)2

nr κ = m2 + qB
(
2nr + 1 − κ −

s
2
+

���κ − s
2

���) , (13)

where L(|
κ− s

2 |)
nr are generalized Laguerre polynomials. The solutions obtained allow positive and

negative eigenenergies given by

ε
(s)
nr κ = ±

√
m2 + qB

(
2nr + 1 − κ −

s
2
+

���κ − s
2

���) . (14)

4. Concluding remarks

As desired, we were able to obtain the Dirac spinor by just calculating a two-component spinor
single radial equation, whose form allow us to map it quite simply into the non-relativistic theory.

The obtained spectrum is in conformity with results avaiable in the literature, as can be seen for
example in the reference [9] — although in it there is only the spectrum for κ ≥ 1/2. Furthermore,
it is valid to cite that the spectrum is analogous to the same system in 2+1 dimensions, as can be
seem in [11]. The spectrum here obtained, though, contradicts results avaiable in the literature [6].
Certainly, ours is favourable, since in the reference cited, the spectrum has absurd possibilities, like
ε2 < 0.
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