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The inverse problems of exploration geophysics are to reconstruct the spatial distribution of the
properties of the medium in the Earth’s thickness from the geophysical fields measured on its
surface. In particular, this paper deals with the problems of gravimetry, magnetometry, and mag-
netotelluric sounding, as well as their integration, i.e., the simultaneous use of several geophysical
fields to restore the desired distribution. To implement the integration, a 4-layer 2D model was
used, where the inverse problem was to determine the lower boundary of the layers, and each
layer was characterized by variable values of the depth of the lower boundary along the section
and fixed values of density, magnetization, and resistivity, both for the layer and for the entire data
set. To implement the neural network solution of the inverse problem, a data set was generated
by solving the direct problem, where for each pattern, the distribution of layer depth values was
set randomly in a given range and with a given step, i.e. it took discrete values from a certain set.
In this paper, we consider an approach involving the use of neural networks to solve the problem
of multiclass classification, where class labels correspond to discrete values of the determined
layer depths. The results of the solution are compared with the results of the solution of the same
inverse problem in the formulation of the regression problem, in terms of the error in determining
the depth of the layers.
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1. Introduction

The solution of the inverse problems (IP) of exploration geophysics (EG) is aimed at searching
for useful fossils by studying the structure of the near-surface layer of the earth. The general
statement of the EG IP consists in reconstructing the distribution of the physical parameters of the
medium in the thickness of the earth’s crust from the physical fields measured on the earth’s surface.
In particular, in this study we consider the IP of gravimetry (G), magnetometry (M) and magnetotel-
luric sounding (MT), which consist in restoring the spatial distribution of density, magnetization,
and electrical resistance of the medium in the Earth’s crust by the values of gravitational, magnetic,
and magnetotelluric fields, respectively. In the two-dimensional and three-dimensional cases, these
IPs have no analytical solution, so they are solved numerically. These IPs are nonlinear, ill-posed or
ill-conditioned problems with high dimension both at the input and at the output, which generally
leads to a low quality of the solution. As an additional method for improving the quality of the
solution, the present study considers the integration of geophysical methods [1–3], which consists
in the simultaneous use of data of several geophysical methods.

The traditional methods for solving the EG IP include optimization methods[4] based on the
multiple solution of the direct problem with the minimization of residuals in the space of the
observed fields, and approximation methods, which also include matrix methods using Tikhonov
regularization [5]. Optimization methods have a number of disadvantages: they are characterized
by high computational costs and by the need for a good first approximation, which may be obtained
using alternative measurement methods. At the same time, the main drawback of optimization
methods is the need to have a correct model for solving the direct problem, in the absence of which
this method is not applicable. In addition, due to the inherent incorrectness of many IP, a small
residual in the space of the observed quantities does not guarantee a small residual in the space of
the determined parameters (see e.g. [6]). For matrix methods based on regularization, the main
difficulty is the need to choose the regularization parameter. In addition, matrix methods are linear
methods, so when using them to solve nonlinear problems, it is necessary to perform nonlinear data
preprocessing.

Therefore, to solve such problems, machine learning (ML) methods that are free from the above
disadvantages are considered as an alternative. High computational costs when using ML methods
are shifted from the stage of application of the computing system to the stage of its development,
making practical use of such a system more convenient.

At the same time, when solving the RG problem, the ML methods can be used at various stages
of its solution: in data preprocessing, e.g., for noise removal [7, 8]; as an independent optimization
method [2, 3, 9] or as a component of optimization methods used to solve the EG problem [10]; as
an independent inversion method [1, 11–19]; in solving the classification problem to select a class
of geological media [20]. In this study, we considered neural networks as an independent inversion
method.
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The general scheme for applying the machine learning methods to solving IP of EG includes
the following steps:

• Definition of a parameterization scheme with a finite number of parameters describing the
sought-for distribution

• Generation of a training dataset
• Training a ML model on the training dataset
• Applying the obtained ML model to the studied data.

Generation of a training dataset involves performing the following steps for each pattern:
• Setting a random distribution of the parameters over the macro-grid determined by the

parameterization scheme
• Calculation of the distribution of the parameters over the micro-grid
• Calculation of the field values by solving the direct problem using the finite difference method

on the micro-grid.
In practice, in the case of high dimension of the problem being solved, it is often not a random

setting of parameters that is used, but a random selection from a certain finite set of discrete values.
This is also the case for the data used in this study. However, in this case, the direct application
of NN to determine these discrete values inevitably has errors, since NN by their nature have
continuous output. Therefore, in this paper we propose an approach based on the change in the
initial problem statement. This approach consists in using NN to determine discrete values by
solving a classification problem rather than a regression problem. To implement this approach, the
use of "one-hot-encoding" (or 1-of-N) is considered, which is generally used in machine learning
to solve problems from such areas as natural language processing [21–24], video [25] and image
processing [26, 27] and generation [28], genomic data processing [29–33], and others [34, 35].

The purpose of this study is the comparison of the approach based on the direct neural
network solution of the regression problem to the approach based on consideration of the discrete-
valued outputs, the “one-hot encoding” of these discrete outputs, and the subsequent solution of
the classification problem. We also test the applicability of the integration of geophysical methods
when using the classification approach in the described statement.

2. Physical statement of the problem

2.1 Parameterization scheme

In order to implement the integration of various geophysical methods, it is necessary that
the determined parameters of each of the methods are the same. This approach corresponds
to the geometric formulation of the problem, which consists in determination of the boundaries
of geophysical objects. In particular, in this study we considered the parameterization scheme,
which consists in determining the boundaries of geological layers of a layered medium. The
parameterization scheme was a four-layer two-dimensional model (Fig. 1) – corresponding to a
section of the Norilsk region. The first layer modeled the basalt layer, the second and fourth ones –
terrigenous carbonate deposits of the Tunguska series, the third one – the gabbro-dolerites massive
copper-nickel-platinum ores.
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Figure 1: Parameterization scheme. Markers (x) indicate the locations of measurements of geophysical
fields, arrows indicate the locations of determining the depths of the layers.

Table 1: Physical and spatial properties of the layers

Physical properties Spatial properties

Density Magnetization Resistivity Lower Thickness,
Layer Description 𝜎, `, 𝜌, bound,

kg/m3 A/m Ω·m min – max, min – max,
km km

1 Basalt 2800 3.0 2000 1.00 – 1.48 1.00 – 1.48

Terrigenous
2 carbonate deposits of 2550 0.5 100 1.80 – 1.98 0.32 – 0.98

the Tunguska series

Gabbro-dolerites
3 massive copper- 3000 0.9 1000 2.20 – 2.28 0.22 – 0.48

nickel-platinum ores

Terrigenous
4 carbonate deposits of 2550 0.5 100 — —

the Tunguska series

The dimension of the section was 15 km wide and 3 km deep. The physical field measurement
step is 0.5 km – a total of 31 measurement points along the profile. The discreteness of changing
the boundaries of geological layers is 1 km – a total of 15 depth values for each layer. In this
problem, the values of the depths of the lower boundaries of the three upper layers were determined.
Each layer was characterized by fixed values of density, magnetization, and resistivity, which did
not change within the layer, and which were the same across the entire data set. The physical
characteristics of the second and the fourth layers were the same. The values of the physical and
spatial characteristics of the layers are shown in Table 1. The discreteness of changing the values
of depth was 0.02 km.
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2.2 Data

For each pattern of the original data set, the layer depth values were set randomly in the ranges
shown in Table 1. Further, the direct problem was solved by finite-difference methods for each of
the selected geophysical methods.

The input dimension of the problem was:
• Gravimetry: 1 field component * 31 measurement point (picket) = 31 feature
• Magnetometry: 1 field component * 31 picket = 31 feature
• MTS: 2 field components * 1 frequency * 31 picket = 62 features
The output dimension of the problem was:
• 3 layers * 15 values of layer boundary depth = 45 parameters.

The number of possible discrete values of the output parameters was 25, 10, 5 for the 1st, 2nd and
3rd layers, respectively.

A total of 30 000 patterns were calculated.

3. Methodical statement of the problem

3.1 Regression approach

Regression approach consists in training the neural networks for direct determination of the
parameter values. However, neural networks by their nature have continuous output, therefore,
when they are used to determine discrete values, the solution inevitably has errors, which may be
eliminated by rounding of the solution, or by transfer to the classification approach.

It should also be noted that one of the methods that may reduce the error for the really
continuously valued output is preprocessing of the initial data by discretization of the outputs. If
the discretization step is less or equal to the characteristic error of the output values, the changes
introduced by discretization of the output values in the training set, and by rounding of the output
values of the NN to these discrete values, may result in lower total output error. Within this
approach, transfer from the solution of the regression problem to the solution of classification
problem may additionally improve the results. This general approach will not be tested in this study,
but we consider it as the next step in the development and testing of the discretization/classification
approach.

Thus, the reference regression approach used in this study consists in direct consideration of
the NN output values as the solution of the problem, and in their comparison to the desired output
values without taking into account that these desired values in fact belong to a discrete set.

3.2 Classification approach with one-hot-encoding

Classification approach consists in discretization of the determined parameter, its “one-hot
encoding”, and subsequent solution of the classification problem. The size of the vector encoding
the determined parameter is equal to the number of discrete values that the determined parameter
can take. In the case considered in this study, this number of discrete values is equal to the number
of different values of the layer boundary depth used in the calculation of the training set patterns by
solving the direct problem.
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All the positions in this encoding vector are set to “0” except for one position corresponding
to the specific desired discrete parameter value, which is set to “1”. To solve the multiclass
classification problem, we also use neural networks, where each position in the encoding vector
corresponds to a separate output of the neural network. The solution (the value selected by the
classification procedure) corresponds to the output of neural network with maximum amplitude
among all its outputs.

3.3 Reducing the output dimension

To reduce the output dimension of the problem, autonomous determination [13, 14] of param-
eters was used, which consists in individual determination of each parameter by training a separate
NN. When using the regression approach, each such NN has a single output. When using the
classification approach, the number of the NN outputs is equal to the number of discrete values of
the determined parameter. In this case, the NN had 25, 10 or 5 outputs for the parameters of the
1st, 2nd, 3rd layers, respectively.

3.4 Integrating geophysical methods and input dimension

When integrating geophysical methods, the data of two or three geophysical methods were
simultaneously fed to the input of the NN. For individual use of the data of the gravimetry and
magnetometry methods, the NN input was fed with 31 features, for individual use of MTS data –
with 62 features, for simultaneous use of data of two geophysical methods – with 62 or 93 features,
for simultaneous use of data from all the three methods – 124 features.

3.5 Datasets

The original data set was divided into training, validation, and test sets in the ratio of 70:20:10.
The dimension of the sets was 21 000, 6 000, and 3 000 patterns, respectively.

3.6 Neural networks

The type of NN used was the multi-layer perceptron. The architecture used had a single hidden
layer with 32 neurons in it. Activation function of the output layer was linear for the regression
approach and logistic for the classification approach. To prevent overtraining, early stopping by the
validation dataset was used. Training stops after 500 epochs with no improvement on the validation
set.

To reduce the factor imposed by the influence of the initialization of weights on the training
of NN, 5 networks were trained for each case under consideration, and the statistical indicators of
their application were averaged.
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4. Results

Fig. 2 shows an example of the amplitudes of the neural network outputs when using the classi-
fication approach to determine the boundary depths of different layers using different combinations
of the integrated input data for a separate sample. One can see that the use of the integration
of geophysical methods increases the stability of the neural network classification when using the
classification approach.
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Figure 2: An example of the amplitudes of the neural network outputs when using the classification approach
to determine the boundary depths of different layers using different input data for a separate sample. Each
column denotes a separate output of the neural network. The gray color indicates the true answer. Vertical
axis scale in each diagram is from 0 to 1. G, M, MT – individual use of gravimetry, magnetometry and
MTS data; G+M, G+MT, M+MT, G+M+MT – simultaneous use of data from several geophysical methods
(integration of methods).
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Fig. 3 shows the histogram of errors when using the classification and regression approaches
to determine the boundary depths of different layers using different input data. One can see that the
use of the integration of geophysical methods reduces the number of errors with large values for all
layers and for both approaches. In some cases, the classification approach gives a better result than
the regression approach. Also one can see that it may be possible to further reduce the errors of the
regression approach by rounding the answer to the nearest discrete value.
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Figure 3: Histogram of errors when using the classification (markers) and regression (bars) approaches to
determine the boundary depths of different layers using different input data averaged over 5 neural networks.
Vertical axis scale in each diagram is from 0 to 3000 (the size of the test dataset). The position of the markers
corresponds to the discretization step of the output values, since the errors take discrete values. The bin
width also corresponds to discretization step of the output values. The position of the bin centers coincides
with the position of the markers. G, M, MT – individual use of gravimetry, magnetometry and MTS data;
G+M, G+MT, M+MT, G+M+MT – simultaneous use of data of several geophysical methods (integration of
methods).
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The overall results for regression and classification approaches and for various sets of input
data are presented in Fig. 4. As an indicator of the quality of the solution, we used the relative error
calculated as the mean absolute error (MAE) normalized by the range of change of the determined
parameter. For all the three layers and for both approaches, simultaneous use of data of any two
geophysical methods reduces the error compared to the individual use of data of any of them. The
best result is shown by simultaneous use of data of all the three geophysical methods.
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Figure 4: Dependence of the quality of the solution on the integration of the input data for regression and
classification approaches.

In some cases, the classification approach gives a better result than the regression approach.
For the 1st and the 2nd layers, this result is observed in the case of integration of gravimetry and
magnetotellurics, and with integration of all the three geophysical methods. For the 3rd layer, this
result is observed in most cases.

5. Conclusion

Based on the results of this study, the following conclusions can be drawn:
• The classification approach was capable to give better results than the regression approach in

the following cases:
◦ For the 1st and the 2nd layer with integration of gravimetry and magnetotellurics, and

with integration of all the three geophysical methods
◦ For the 3rd layer in most cases.

• Integration of geophysical methods improves the results for all layers, both for the regression
approach and for the classification approach:

◦ The use of the integration of geophysical methods increases the stability of the neural
network classification when using the classification approach

◦ Simultaneous use of data of any two geophysical methods reduces the error compared
to the individual use of data of any one of them.

◦ The best result is shown by the simultaneous use of data of all the three geophysical
methods.
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Thus, in the present study, the applicability of the classification approach based on "one-hot-
encoding" to improve the quality of the solution to the inverse problem of exploration geophysics
has been demonstrated for the dataset in which the desired output accepts values from a discrete set.
Also, the efficiency of the integration of geophysical methods to improve the quality of the solution
has been confirmed also for the case of using the classification approach.

Future studies should examine the efficiency of the classification approach for the case when
the outputs accept continuous values from a defined range, within the sequence “discretization” –
“one-hot encoding” – “classification”.
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