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Deep neural networks have rightfully won the place of one of the most accurate analysis tools in
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deep neural network in a classification task in an instance of top quark analysis. The approaches and
recommendations will cover hyperparameter tuning, boosting on errors and AutoML algorithms
applied to collider physics.
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1. Physics task

In the scope of high energy physics analysis the measurement of t-channel single top-quark
production is used as a benchmark to calibrate the analytical tools and assumptions. Then the
developed methods are used to measure deviations from the Standard Model – the Flavor Changing
Neutral Currents (FCNC). The physics task is similar to the analysis of CMS collaboration [1].
Neural networks are used extensively throughout the analysis to separate background and signal
events. First neural network model is used to filter out the multi-jet QCD events as these events
are hard to model with existing Monte-Carlo methods. This network uses only five variables as its
inputs and has relatively small number of trainable parameters. After the multi-jet QCD suppression
a larger Standard Model neural network is used to identify top-quark events. These two different
tasks allow us to test the performance of described methods in two separate instances.

2. DNN hyperparameter tuning

2.1 Overview

Most of machine learning models have two types of parameters: trainable and non-trainable[2].
Trainable parameters change during training, and non-trainable (or hyperparameters) are set by the
user. For example, in a typical multi-layer perceptron hyperparameters can be the number of hidden
layers, number of neurons in each hidden layer, the learning rate, regularization constants, etc. In
this case trainable parameters are the weights and biases of each neuron.

Different hyperparameter combinations give the deep learning model varying degree of com-
plexity and non-linearity. Therefore, hyperparameter tuning can help resolve overfitting and under-
fitting to a certain degree.

Finding the best combination of hyperparameters can be a challenging task as the model’s
performance can only be evaluated when the training is finished. Luckily, many hyperparameter
optimization frameworks exist to automate this tedious process.

2.2 Hyperparameter tuning frameworks

One of the most established and well-known frameworks is called Optuna[3]. It provides tools
to tune any machine learning model and quickly visualize the results. Another useful feature of
Optuna is the budget – the amount of time used to tune a single model. This can be useful to
compare different models and still give both fair treatment, tuning them for the same time.

However, we have opted to use Keras Tuner[2] for its tight integration with Tensorflow
Keras, allowing us to use hyperparameter tuning with minimal code modifications and dependen-
cies. After each trial this module generates a .JSON file containing all required information about
a single run. If the user wishes not only get the best performing hyperparameter combination but
also to explore the dependencies and tendencies of their deep learning model, the results can be
parsed and visualized.

2.3 Tuner setup

The first major step in setting up any hyperparameter tuning is defining all possible hyperpa-
rameter combinations – the hyperparameter space. Usually the ranges of numeric hyperparameters
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Figure 1: Example of the hiplot interface

are defined either with a distribution or with a set array of values. The latter is done by defining
the minimum and maximum values and setting the step parameter, the distance between two con-
secutive samples in the range. We have used this approach to visualize the relations between the
model’s performance and the values of its hyperparameters. The non-numerical hyperparameters
(the hidden layers activation function, for example) are chosen with the Choice method.

The second step is to define a score variable – a metric to quantify and compare the model’s
performance. In the default case this variable can be equal to model’s loss value (binary crossentropy
in our binary classification task) or to any pre-made or user-defined metric.

With the hyperparameter space expanding with each new variable, a suitable algorithm to
navigate it is required. Keras Tuner provides three basic Tuner algorithms, each with its own
advantages and drawbacks: BayesianOptimization, Hyperband and RandomSearch.
BayesianOptimization algorithm uses tuning with Gaussian process. This is the fastest

built-in algorithm, however, it can only find the local minima in the hyperparameter space. In our
tests it converged within approximately 10% of the total combinations in the hyperparameter space.
The parameters this algorithm converged on were adequate albeit not the overall best.
Hyperband algorithm uses the performance of the first epochs to compare different hyperpa-

rameter combinations. We decided against this method as models with different learning rates will
have different Hyperband performance which will not reflect their overall accuracy.
RandomSearch tuning algorithm randomly samples hyperparameter combinations from the

hyperparameter space. This method does not use any fancy logic, however, it reliably provides a
near-best result when covering 40-50% of the hyperparameter space.

The code covering the needed adaptations is available in the Appendix.

2.4 Results interpretation

After the tuning process is compete, all trials results are stored in .JSON files. The user can
opt to use the best configuration without looking at other models, however, plotting the relations
can provide useful insights into how the chosen model is performing.

For general overview one can use Facebook’s hiplot[4] utility (Figure 1). This interface
allows the user to quickly analyse the trained models, sort them by their performance and check
specific hyperparameter combinations.

To further investigate the hyperparameter space, one can plot the relations between models’
performance and the values of used hyperparameters. We give two examples of such visualization
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in Figures 2 and 3. In the first set of plots covering the tuning of larger Standard Model neural
network we demonstrate the relation between the model’s performance and a certain hyperparameter
value, averaging over the rest of hyperparameters. In the second set we used heatmaps to describe
hyperparameter combinations for the smaller QCD suppression neural network.

Having investigated the hyperparameter space for two typical High Energy Physics tasks, we
can give broader recommendations for neural network design for this field. First of all, using ReLU
for hidden layers activation function is advisable. Standard tanh and sigmoid functions lead to
worse performance in deeper, bigger networks. In both cases networks with one or two hidden
layers performed better and more stable than their deeper counterparts. The number of nodes in
the hidden layers varied depending on the amount of input features: for the bigger network with
50 input features the amount of neurons lied in range between 200 and 400, and for the smaller
network with 5 input features it was closer to 120.

Figure 2: One-dimensional plots describing the relations between hyperparameter’s values and model’s
performance for the Standard Model neural network

Figure 3: Two-dimensional plots describing the relations between hyperparameter’s values and model’s
performance for the QCD suppression neural network

3. AutoML

3.1 Overview

AutoML approach covers finding the optimal machine learning model, training it, evaluating
it and tuning it if its performance is insufficient. In theory, given enough time and computational
resources, this approach can yield an adequate model without investing researcher’s time into
complex architecture tuning and feature engineering. High energy physics data is close in structure
to tabular data. In other areas tabular data may contain text and categorical data, but in high energy
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physics data is primarily numerical and can be organized into columns, so the task is simpler in a
certain way.

(a) Discriminator of the Explain mode model (b) ROC Curve of the Explain mode model

(c) Discriminator of the Compete mode model (d) ROC Curve of the Compete mode model

(e) Discriminator of the tuned Tensorflow Deep Neural
network

(f) ROC Curve of the tuned Tensorflow Deep Neural net-
work

Figure 4: Comparison between two AutoML models and a tuned DNN model

3.2 Deep learning for tabular data

Deep learning has shown comparable performance[5] in tabular data classification to gradient
boosting models (CatBoost, LightGBM), which are much cheaper in terms of computational
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resources. However, our preliminary testing done using the LightGBM package showed that fine-
tuned neural network performs slightly better and overfits less than a tuned LightGBM[6] model.
Google’s Adanet[7] package uses genetic algorithms to create a custom neural network structure
for each machine learning task. This approach has a promising idea, however, the lack of support
for weighted events limits its uses in high energy physics analysis where every event has a very
specific weight value.

3.3 AutoML in high energy physics

We have opted for using mljar-supervised[8] library for automated machine learning.
This library is easy to comprehend, has several performance modes (focused on data exploration,
speed of inference or maximum accuracy of classification). It uses several machine learning
algorithms (Linear, Random Forest, Extra Trees, LightGBM, Xgboost, CatBoost, Neural Networks,
and Nearest Neighbors) for classification and then creates an ensemble of best performing models
for final classification. Here we present the results of two AutoML models in Explain (runs in a
dozens of minutes and performs Exploratory Data Analysis) and Compete (maximum classification
accuracy, needs more computational time, we have run it for a day) modes as the speed of inference
is not crucial in the current analysis. The performance comparisons are shown in Figure 4. Both
classification modes provided good accuracy and even outperformed the tuned neural network in
terms of roc_auc metric on the test dataset. However, this was done with a much higher degree of
overfitting, thus reducing the AutoML model’s predictive power.

3.4 Resume

mljar-supervised provided a good baseline in all our use-cases, with its maximum accuracy
mode overfitting a bit more that we would like it to. As it is much easier to control overfitting inside
Tensorflow package through regularization and early stopping callback, for the time being we will
continue to use it in our analysis, but this AutoML package came close to it in terms of classification
accuracy. We will definitely monitor the development of this great tool and continue testing it.

4. DNN boosting on errors

We have also tried boosting on errors. The concept of this method is simple:

1. Train a machine learning model on unaltered data, get its predictions

2. Take the events that were miss-labelled after first classification and artificially increase their
weights

3. Train a second model using the ’corrected’ weight vector, supposedly achieving better perfor-
mance, as this model will put more emphasis on difficult events that were hard to differentiate
in the first place

4. Update the weights and repeat
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This method did not work as the results of classification worsened after each iteration. The
illustration of this performance degradation can be found on Figure 5. The best explanation we have
come up with was that deep neural network is not a weak learner, which were noticed to benefit
from such manipulations.

(a) Baseline (b) First iteration (c) Second iteration (d) Third iteration

Figure 5: Performance degradation with each boosting on errors iteration

5. L-regularisation

Through experimentation with input features we have found out that certain features worked
extremely well for first-order classification, causing the model to increase its weights associated
with these features, in turn lowering the importance of other, still needed, features. The proposed
method included using l-regularization [9] to limit high weights so that they will not overshadow
other weights as much.

We have conducted the l-regularization study by getting a good baseline model from the Keras
Tuner, fixing its hyperparametes and varying only the regularization constant. This was done for
L1, L2 and L12 regularization types.

The results showed that when the regularization constant is chosen right, the discriminant
distribution curve becomes smoother and general classification performance increases. However,
when the regularization constant is too small, there are no perceivable improvements. High
regularization constant values can be even more detrimental as they will outright decrease the
classification performance of otherwise decent model. The illustration of these relations can be
found in Figure 6.

We have not noticed considerable differences between the regularization types, L2 performed
slightly better, but that disparity was within the margin of error.

6. Conclusion

We have demonstrated several approaches to improve the accuracy of classification based on a
model of a Deep Neural Network in High Energy Physics. Here we provide a short summary of the
methods described in the paper. DNN hyperparameter tuning is an effective method of improving
the accuracy of the model, but it requires a lot of computational resources. The required computing
time can be reduced by making hyperparameter space smaller and using a suitable optimization
algorithm. We also provided recommendations based on our hyperparameter space exploration for
typical high energy physics datasets. AutoML for tabular data can be used in High Energy Physics
with relative success and little machine learning experience, however, the degree of overfitting
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(a) The constant is too small (b) The constant is chosen well (c) The constant is too large

Figure 6: DNN model’s dicriminators. The only difference between the models is the regularization constant.

is hard to control. Boosting on errors is not advised to use with DNNs, and using any type of
L-regularization is advisable if the regularization constant is chosen correctly.
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A. Code for Keras Tuner adaptation

The function that returns the base model:

def createModel(dim, hidden_layers, hidden_layers_dim, dense_activation,
dropout_rate, learning_rate):↩→

model = Sequential() model.add(Input(shape=(dim,)))

for n in range (hidden_layers):
model.add(Dense(hidden_layers_dim, activation=dense_activation))

model.add(Dropout(rate = dropout_rate))

model.add(Dense(units=1, activation='sigmoid'))

adam = Adam(lr=learning_rate)

model.compile(loss='binary_crossentropy', optimizer=adam,

metrics=['mean_squared_error'])↩→

return model

The function that returns the model adapted to the Keras Tuner environment:

def build_model(hp):
model = Sequential()

model.add(Input(shape=(dim,)))

for n in range (hp.Int('hidden_layers', min_value = 1, max_value = 7,
step = 1)):↩→

model.add(Dense(units = hp.Int('hidden_layers_dim', min_value =

50, max_value = 1000, step = 50), activation =

hp.Choice('dense_activation',values=['relu', 'tanh'])))

↩→

↩→

model.add(Dropout(rate = hp.Float('dropout_rate', min_value =

0.1, max_value = 0.5, step = 0.1)))↩→

model.add(Dense(units=1, activation='sigmoid'))

adam = Adam(hp.Choice('learning_rate', values=[1e-2, 1e-3])))

model.compile(optimizer=adam, loss='binary_crossentropy')

return model
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