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The imaging Cherenkov telescopes TAIGA-IACT, lodate the Tunka valley of the
republic Buryatia, accumulate a lot of data in arsiperiod of time which must be
efficiently and quickly analyzed. One of the methad such analysis is the machine
learning, which has proven its effectiveness in ynachnological and scientific fields
in recent years. The aim of the work is to study possibility of the machine learning
application to solve the tasks set for TAIGA-IAChe identification of the primary
particle of cosmic rays and reconstruction theiygdtal parameters. In the work the
method of Convolutional Neural Networks (CNN) wampléed to process and analyze
Monte-Carlo events simulated with CORSIKA. Alsoigas CNN architectures for the
processing were considered. It has been demorstthss this method gives good
results in the determining the type of primary jgtes of Extensive Air Shower (EAS)
and the reconstruction of gamma-rays energy. Tedteeare significantly improved in
the case of stereoscopic observations.
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1. Introduction

To create a more complete picture of the evoluibtihe Universe and check the adequacy
of theoretical models, it is necessary to investighe interactions of elementary particles in the
energy range above 100 TeV to study the phenonmetieeiUniverse [1]. The main objective of
the gamma-ray astronomy is the identification aeskarch of high-energy gamma radiation
sources. Such objects include supernova remnaatise agalactic nuclei, and much more.
Measuring the flux, energy spectrum and directibaroval of gamma photons helps to find
answers regarding the generation mechanism of leigbrgy gamma radiation and the
morphology of sources.

At the moment, gamma radiation can be observed footh space and from the surface.
The registration of gamma quanta with energiesedsTlis several orders of magnitude lower
than photons with lower energies; therefore, theg aegistered using ground-based
installations. Ground-based Imaging Atmosphericr€hkov Telescopes (IACTs) are the main
instruments for observation of the high-energy gamradiation. These telescopes register not
the gamma quanta (or cosmic rays) themselves, HautCherenkov radiation arising in the
process of the Extensive Air Shower (EAS) generbtethem.

TAIGA-IACT is a part of the hybrid installation T&IA (Tunka Advanced Instrument for
cosmic ray physics and Gamma-ray Astronomy), latdatethe Tunka valley of the republic
Buryatia [2]. These telescopes have large spheseginented mirrors with a camera in the
focus of the mirrors. The cameras contain a maifi®60-590 photomultipliers (PMT). The
main task of the TAIGA-IACT is to separate gammarés from the cosmic ray background
and reconstruct the parameters of the primarygbeurti

One of the standard methods for image processingingdad by IACTs is the Hillas
parameter method [3]. The essence of this methtthisthe spot in the camera is described by
an ellipse with certain parameters, according tdckvhihe classification and restoration of
events are carried out. At the moment the use falational neural networks [4] as one of the
methods of machine learning for TAIGA-IACT imageopessing has not been implemented to
real data, therefore this work allowed us to stilsbyprospects of using this method. It is known
that other IACT installations [5, 6] have shown mprsing results in image analysis of model
data using convolutional neural networks. CNNs wads® used for the TAIGA-IACT model
data of one telescope [7, 8]. However an imbalaoicearticle fluxes is observed in an
experiment, thus it is necessary to consider thssdication of events in the case of an unequal
ratio of gamma quanta and hadrons. TAIGA-IACT atsasists of two telescopes [2], so the
CNN method will provide the estimation the qualitfiyevent energy reconstruction in the case
of joint observations by several telescopes.

The method of convolutional neural networks whicksvapplied for processing of Monte-
Carlo events is presented in this article. Sevevalvolutional neural network structures have
been developed, trained and tested. The qualitevaint classification and event energy
reconstruction were evaluated. The case of obsenstof joint gamma events with two
telescopes (stereo-mode) was also considered angaced with the observations with one
telescope (mono-mode). Results have been dematstthat CNNs improve the selection
(around 100 times) for unbalanced ratio of gammantp and hadrons compared to the equal
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ratio. Also increasing the number of telescopesnduobservations linearly improves the
accuracy of determining the energy of events.

2. Method of convolutional neural networks

Neural networks are mathematical representatiomeofons work in the brain [4]. So, in
one neuron the weighted signals coming from the&ipus neurons are summed up. After that
the neuron generates an output signal through ¢heation function. Neurons multilayered
form a neural network. During the training with seexamples weights are adjusted between
neurons through the backpropagation method [9] widcan analogue of the gradient descent
method. This method allows to reduce the error betwthe predicted by network and the true
result through the calculation of derivatives.

Convolutional neural networks (CNN) appeared assalt of studying the visual cortex of
the brain [4]. It was found out that in the visealtex there is a small local receptor field that
reacts to visual irritants located in a limitedaacé the visual field. This led to the emergence of
a new structure in neural networks — convolutidagkrs. Convolutional layers use a small-
sized weight matrix ("local receptor field"), whidéh called a filter or kernel. With its help a
sequential “scan” of the image takes place thratighconvolution operation. This operation
allows to identify common structures and featurethe images regardless of their location, on
the basis of which ordinary neurons allocate theegsgary response. Due to this CNN is one of
the best ways to analyze images. CNNs also hedplte several data processing tasks (in our
case, classification and regression) with minimahrges in the structure, for example, by
changing only the activation function.

2.1 Used CNN architectures

In this work the programming of convolutional nduratworks was carried out in Python
using a special Tensorflow library together withr&e [10]. Schematic images of the network
architectures developed during debugging are shiowihigure 1. During the debugging the
numerical values of some hyperparameters of nemgévorks (such as the learning rate,
dropout chance) were determined. As can be seem the figure, two or three convolutional
layers depending on the task were used in the modlkke regression problem had to use more
convolutional layers compared to the classificatiwiwork. This is due to the fact that the
regression problem requires a more thorough asabfghe image, since the image depends on
many factors: the type of primary particle, thetahge to the telescope, and other factors. Also,
the main differences between these networks asgeceko the output value due to changes in
the activation function and the method of calcualgtihe error. Mean squared error calculation
was used for the regression task, while binarysceygropy loss calculation were applied in
classification network. Dropout and Pooling layeetped with the overfitting problem [4].

Along with user developed user structures the tchires of well-known networks were
also studied: ResNet GoogLeNet. These networks showed one of the bssits in ImageNet
Large Scale Visual Recognition Challenge [11]. Eomparison they were reduced in such a
way that the number of trained parameters apprdeiymacoincided with the number of
parameters in user networks. Their simplified streeis also shown in Figure 1.
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User CNN architectures
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Figure 1: The CNN architectures used in work on processimyanalysis of simulated Monte-
Carlo events of TAIGA-IACT

3. Model data

The training and testing of neural networks wagiedrout on three different sets of
Monte-Carlo events simulated with CORSIKA [12]. Asdription of each set is presented in
Table 1. SeNel andNe2 were used for classification and regression,enhié third set was only
applied to study the quality of energy reconstarcin stereo-mode. It should be noted that due
to the small number of events in the first setaittficial expansion were occurred by rotating
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the images relative to the center of the camerau®ry 60 degrees. Thus, the first set was
expanded in 6 times.

Set Total events (gamma/proton) Train a:m;jti\(;alldatlon Energies
1 30 000 21 Hadron: 2-100 TeV
(17 500 / 12 500) y: 1-60 TeV
2 200 000 31 Hadron: 5-100 TeV
(100 000 / 100 000) v: 2-50 TeV
3 18 000 (only gamma) 2:1 1-50 TeV

Table 1. The description of Monte-Carlo data

The following steps were performed as a preprongssf images to improve training.
Single pixels were removed during the image clegqprocess. Then each image was squared
by shifting the pixels relative to each other [1Bhages with a size of 31x31 pixels were
obtained as a result of this transformation. Als® amplitude of each pixelx; in each image

was scaled as follows:
kizéln (1+x,) , 1)

wherei is the pixel number in the imageX; is the scaled pixel amplitude. The number 9
limits the change ofX; in the range of values from O to 1, since the maxmvalue of the
pixel amplitude in the training and validation Eetinknown in advance.

4. The study of the obtained results

As mentioned above, the main objectives of the TMBCT are:
The selection of gamma-ray events from the hademkdround (classification);

The restoration of parameters of the primary part{cegression), in particular, the
energy.
The results of using CNN to solve these probleragpaesented further in the article.

4.1. The classification task

Training and validation were applied on the firstdasecond sets. The accuracy of
determining the event class was 95-96% regardldsshe set. This result showed the
independence of the rotated images during CNN dpereDue to the peculiarities of the filters
of convolutional networks this result was expedtedL3].

To estimate the classification and subsequent cosgma the quality parameter of
selectionQ was considered, which can be defined as the ditithe significance criterior®
before and after selection by the neural netwoHhe (tignificance criterion in modeling
determines how many times the expected signal dsdabe background):

Q_ Safter — Ng / Ngammas ’ (2)

- Soefore \/N g +N hg v N total
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whereNg — the number of true gamma events identified &y @NN as gammaet;lhg — the

number of proton events identified by the CNN asges eventd\ — the total number

gammas
of gamma events in the sét, ., — the number of all events in the set. Since tiNNC

classification gives the probability that the evénta gamma quantum the class separation
threshold was defined in such a way that approxinei0% of the true gamma quanta were
determined correctly. Therefore, the threshold agsroximately 0.97.

It is known [14] that the fluxes of gamma quantd hadrons differ greatly (approximately
1:10 000) in a real experiment, so the param@teras calculated in the case of different ratios
of gamma photons and hadrons. The results of @inglthe quality parameter of selection are
demonstrated in Table 2. The table shows that tieeneo improvement in the quality of
classification with an equal ratio of gamma quaantd protons. But there is a good suppression
of proton events with unequal ratio, but the sigaificeS becomes small (1 sigma). Among the
various structures of convolutional networks Goddeegives the best result.

The ratio o; Applied CNN <
gamma an architectures after Q
hadrons
1:1 User CNN 107.24 1.07
1:100 User CNN 3.69 4.11
1:1000 User CNN 0.92 5.04
1:1000 ResNet 1.04 5.72
1:1000 GooglLeNet 1.13 6.21

Table 2: Data classification with different class balance
4.2 Theregression task

In the case of regression the evaluation measusethearelative error in determining the
energy & which is defined as follows:

| Epred_ Etrud
=, 3
E @)

true

whereEpred—the energy predicted by CNIE,  —the true energy value. In this task the CNNs

tried to restore the energy of events in the cdse mixed set (there are gamma quanta and
hadrons in the set), and in the case of a setlgfgamma quanta. Figure 2 shows the relative
error distributions (denoted &l_err on the graph) for both cases. Thus, it is dematedrthat
the median value of the relative error for the rdiset is 32%, while the “clear” set is 23-25%.
At the same time it can be seen that different CétiNctures does not greatly improve the
result, by no more than 3%. The best result inrdgteng energy is given by the GoogLeNet.

)
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Relative error distribution
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Relative error distribution
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=== 2: median = 26.26
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=1 1: User model

=1 2: ResNet

=1 3: GoogleNet
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b)
Figure 2: The distribution of relative error of energy rastruction in case of mixed (gammas
and protons) events (a) and in case of only gamnadsps (b)

The study of event energy recovery in the casaebtereo mode and comparison with the
mono mode was carried out only for gamma eventsuaimdy the user CNN model. The second
telescope was taken into account when modifyinghttevork as follows. In the regression user
architecture an additional input has been addel tivid same number of convolutional layers as
the first input (see Fig. 1). After that the twguns, or channels, were combined using dense
layers.

The results of the evaluation of the energy deteation and comparison with the mono-
mode are presented in Figure 3. As can be sedreifigure, stereoscopic observations double
the accuracy of energy recovery. Thus, the relaiver decreased from 23% to 14%.
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Relative error distribution
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Figure 3: The distribution of relative error of energy rastruction for stereo- and mono-modes
of TAIGA-IACT for gamma-photons events

5. Conclusion

For ground-based TAIGA-IACTs there is a problemrelfably determining the type of
recorded events, as well as the problem of regjotfre initial parameters of particles that
generate EASs. The method of convolutional neustivorks was applied to solve these
problems.

The results demonstrated that CNN classificatioppsesses the proton background
greatly (around 100 times), but significance is I@avound 1 sigma). Energy reconstruction
showed the around 24% relative error for one telescand 14% — for two telescopes. ResNet
and GooglLeNet demonstrated a slight results impnave in both particle type and energy
determination.

Thus, in perspective this method can be used ®rettergy restoration, as it gives good
results. Also CNN for good background suppressiam lce considered as additional selection
threshold
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