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Strong CP problem Andreas Wirzba

1. Introduction

This is a condensed report in which I focus on the main points of my two lectures in the PhD
school "Aspects of Symmetry" and omit some parts that were either not directly related to my task
of lecturing on the strong CP problem or that are already well documented elsewhere, see e.g.
Refs. [1–3]. In addition, my report is heavily focused on aspects that I found interesting myself and
certainly does not do general justice to this topic.

In a kind of dielectic approach, I tried to guide the audience through this topic by following the
spirit of the fairy tale about the hare and the hedgehog, where the hedgehog(s) stood for a question
or a problem that arose, while (the race of) the hare played the role of a proposed solution. As in
the fairy tale, of course, each new proposed solution then inherently induced a new problem.

Instead of giving a detailed introduction, I would like to list these problems and the proposed
solutions here in sequential order, which at the same time reflects the contents of this report.

1. The 𝑈 (1)𝐴 problem or why are there only 𝑁2
f − 1 pseudo-Goldstone bosons in strong inter-

action physics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 2.

– The proposed solution is the𝑈 (1)𝐴 anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.

2. The𝑈 (1)𝐴 anomaly is inconsequential in perturbation theory . . . . . . . . . . . . . . . . Section 3.1.

– The proposed solution are large gauge transformations and instantons . . . . . . . Section 3.2.

3. The QCD vacuum with winding number 𝑛 is not unique, not gauge invariant and violates
cluster decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 4.1.

– The proposed solution is the theta vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 4.2.

4. Empirical bound on the neutron electric dipole moment and the strong 𝐶𝑃 problem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5.2.

– The proposed solution is the Peccei-Quinn mechanism and axions . . . . . . . . . . . Section 6.1.

5. Original axions are excluded by empirical constraints . . . . . . . . . . . . . . . . . . . . . . . . Section 6.3.

– The proposed solution is the extension to invisible axions . . . . . . . . . . . . . . . . . . .Section 6.4.

6. How to detect invisible axions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 6.5.

– A possible solution is to do direct and indirect searches in rather narrow axion-mass
windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 6.5.2.

7. At the end, the problem of fine-tuning reappears by an explicit breaking of the Peccei-Quinn-
symmetry at the UV scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 6.6

– A possible solution is to do search for EDMs of several particles. . . . . . . . . . . .Conclusions.
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2. The first problem: why are there only 𝑵2
f − 1 pseudo-Goldstone bosons?

According to the Goldstone theorem the mesons of the pseudoscalar octet of flavor 𝑆𝑈 (3) are
the pseudo-Goldstone bosons linked to the spontaneous symmetry breaking (SSB) of the chiral
flavor group 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 to 𝑆𝑈 (3)𝑉 of the Standard Model (SM) and its strong interaction
theory, Quantum Chromodynamics (QCD). In the chiral limit, the QCD Lagrangian is even invariant
under the larger group1

𝑈 (𝑁f)𝐿 ×𝑈 (𝑁f)𝑅 = 𝑆𝑈 (𝑁f)𝐿 × 𝑆𝑈 (𝑁f)𝑅 ×𝑈 (1)𝑉 ×𝑈 (1)𝐴
𝑆𝑆𝐵−−−→ {𝑆𝑈 (𝑁f)𝐿 × 𝑆𝑈 (𝑁f)𝑅/𝑆𝑈 (𝑁f)𝑉 } ×𝑈 (1)𝑉 ×𝑈 (1)𝐴 . (1)

The associated vacuum remains unchanged only under 𝑆𝑈 (𝑁f) ×𝑈 (1)𝑉 signaling invariance under
the (vectorial) flavor group 𝑆𝑈 (𝑁f)𝑉 and the conservation of baryon number linked to the invariance
under a global 𝑈 (1)𝑉 phase transformation. The quotient group 𝑆𝑈 (𝑁f)𝐿 × 𝑆𝑈 (𝑁f)𝑅/𝑆𝑈 (𝑁f)
characterizes the chiral dynamics of the Goldstone bosons which is “hidden" after the breakdown
of chiral flavor group. But what is the fate of the additional (axial) unitary group, 𝑈 (1)𝐴, of the
QCD Lagrangian? Is it possible that it is spontaneously broken? The answer is no. If there were
an extra pseudo-Goldstone boson, say 𝜂0, it would have to satisfy, according to Weinberg [4, 5], the
following bound

𝑚𝜂0
!
<
√

3𝑚𝜋 ≈ 240 MeV , (2)

while empirically [3] the following inequalities hold:

for 𝑁f = 2: 𝑚𝜋0 ≈ 135 MeV . 𝑚𝜋± ≈ 139 MeV � 𝑚𝜂 ≈ 548 MeV ,
and for 𝑁f = 3: 𝑚𝜋0 . 𝑚𝜋± < 𝑚𝐾± . 𝑚𝐾 0 = 𝑚𝐾̄ 0 < 𝑚𝜂 � 𝑚𝜂′ ≈ 958 MeV ,

(3)

which manifestly contradict the Weinberg bound (2).

2.1 Mass term of 𝑼(3) pseudo-Goldstone bosons and the 𝑼(1)𝑨 problem

In detail, the pseudo-Goldstone boson matrix𝑈 reads for 𝑁f = 3 light flavors:

𝑈 = exp

(
i
𝐹𝜋

8∑︁
1
𝜆𝑎𝜙𝑎 + i

𝐹s
𝜆0𝜂0

)
≡ ei𝜙̃/𝐹𝜋 (4)

where 𝐹𝜋 ≈ 92.2 MeV is here the average axial decay constant of the octet pseudo-Goldstone
bosons 𝜙𝑎, while 𝐹s is its counterpart for the would-be singlet pseudo-Goldstone boson 𝜂0. The 𝜆𝑎,
𝑎 = 1, . . . , 8 are the usual Gell-Mann matrices, while their singlet equivalent𝜆0 ≡

√︁
2/3 diag(1, 1, 1)

is defined in such way that 𝑇𝑟 (𝜆𝑎𝜆𝑏) = 2𝛿𝑎𝑏 holds for all 𝑎, 𝑏 = 0, 1, . . . , 8. Inserting the chiral
matrix𝑈 = exp(i𝜙/𝐹𝜋) with

𝜙 =


𝜋0 + 1√

3
𝜂8

√
2𝜋+

√
2𝐾+

√
2𝜋− −𝜋0 + 1√

3
𝜂8
√

2𝐾0
√

2𝐾−
√

2𝐾̄0 − 2√
3
𝜂8

 +
√︂

2
3
𝐹𝜋

𝐹s


𝜂0 0 0
0 𝜂0 0
0 0 𝜂0

 (5)

1In the following, we will leave the number of light flavors 2 ≤ 𝑁f ≤ 3 general.
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into the usual (leading-order) chiral mass term [6, 7], 𝐹2
𝜋

4 Tr
(
2𝐵0M(𝑈 +𝑈†)

)
, where M =

diag(𝑚𝑢 , 𝑚𝑑 , 𝑚𝑠) is the diagonal quark-mass matrix for the three light flavors 𝑢, 𝑑, and 𝑠, we
get the following result

1
2𝐵0Tr(M𝜙2) = 1

2𝐵0𝑚𝑢

(
𝜋0 + 𝜂

8
√

3
+

√︂
2
3
𝐹𝜋𝜂

0

𝐹s

)2

+ 1
2𝐵0𝑚𝑑

(
−𝜋0 + 𝜂

8
√

3
+

√︂
2
3
𝐹𝜋𝜂

0

𝐹s

)2

+1
2𝐵0𝑚𝑠

(
−2𝜂8
√

3
+ 2

3
𝐹𝜋𝜂

0

𝐹s

)2

+𝐵0(𝑚𝑢 + 𝑚𝑑)𝜋+𝜋− + 𝐵0(𝑚𝑢 + 𝑚𝑠)𝐾+𝐾− + 𝐵0(𝑚𝑑 + 𝑚𝑠)𝐾0𝐾̄0 . (6)

Thus the mass squares of the flavor-charged pseudo-Goldstone bosons 𝜋±, 𝐾±, and 𝐾0, 𝐾̄0 are given
by 𝑚2

𝜋± = 𝐵0(𝑚𝑢 + 𝑚𝑑), 𝑚2
𝐾± = 𝐵0(𝑚𝑢 + 𝑚𝑠), and 𝑚2

𝐾 0 = 𝑚2
𝐾̄ 0 = 𝐵0(𝑚𝑑 + 𝑚𝑠) to that order.

The terms of the flavor-neutral pseudo-Goldstone bosons are still mixed and can be collected in the
following mass matrix2

𝐵0
©­­«
𝜋0

𝜂8

𝜂0

ª®®¬
𝑇


𝑚𝑢 + 𝑚𝑑 1√

3
(𝑚𝑢 − 𝑚𝑑)

√︃
2
3
𝐹𝜋

𝐹s
(𝑚𝑢 − 𝑚𝑑)

1√
3
(𝑚𝑢 − 𝑚𝑑) 1

3 (𝑚𝑢 + 𝑚𝑑 + 4𝑚𝑠)
√

2𝐹𝜋

3𝐹s
(𝑚𝑢 + 𝑚𝑑 − 2𝑚𝑠)√︃

2
3
𝐹𝜋

𝐹s
(𝑚𝑢 − 𝑚𝑑)

√
2𝐹𝜋

3𝐹s
(𝑚𝑢 + 𝑚𝑑 − 2𝑚𝑠) 2𝐹2

𝜋

3𝐹2
s
(𝑚𝑢 + 𝑚𝑑 + 𝑚𝑠)


©­­«
𝜋0

𝜂8

𝜂0

ª®®¬ .
(7)

If we assume 𝑚𝑢,𝑑 � 𝑚𝑠, we see that this mass matrix has two pseudo-zero modes,3 namely [4, 5]:

𝑢𝜋0 = (1, 0, 0)𝑇 with 𝐵0 𝑢
𝑇

𝜋0 [· · · ]𝑢𝜋0 = 𝐵0(𝑚𝑢 + 𝑚𝑑) = 𝑚2
𝜋± (8)

and

𝑢𝜂 =

(
0, 1,
√

2𝐹s

𝐹𝜋

)𝑇
1√︁

1 + 2𝐹2
s /𝐹2

𝜋

with 𝐵0𝑢
𝑇
𝜂 [· · · ]𝑢𝜂 = (1 + 2) 𝐵0(𝑚𝑢 + 𝑚𝑑)

1 + 2𝐹2
s /𝐹2

𝜋

≤ 3𝑚2
𝜋± , (9)

where the last inequality holds since 𝐹2
s and 𝐹2

𝜋 are both positive definite. Note that the equality
is approximately realized if 𝐹2

s � 𝐹2
𝜋 holds, while for 𝐹2

s = 𝐹2
𝜋 the mass-square of the second

pseudo-zero mode agrees with the result of the first one, namely with 𝑚2
𝜋± .

The inequality in (9), which is of course the Weinberg bound (2), describes the so-called𝑈 (1)𝐴
problem as it manifestly violates the empirical mass relations 𝑚2

𝜋 � 𝑚2
𝜂′ for 𝑁f = 3 (or 𝑚2

𝜋 � 𝑚2
𝜂

for 𝑁f = 2).
The above considerations were in fact classical ones as they referred to the QCD Lagrangian

or to the chiral Lagrangian at tree level. The question might arise what happens to this “classical"
𝑈 (1)𝐴 symmetry at the quantum level?

3. The solution of the first problem: the 𝑼(1)𝑨 anomaly

As discussed in Ulf Meißner’s lecture in this school, an anomaly is a quantum obstruction to a
classical conservation law, see e.g. [8]. Especially, there exists an anomaly in the conservation of

2The index 𝑇 stands here for transposition.
3The “pseudo-zero modes" were exact zero modes if 𝑚𝑢 and 𝑚𝑑 would be exactly zero.
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the (abelian and continuous)𝑈 (1)𝐴 current 𝐽𝜇
𝐴

of QCD which reads in the chiral limit

𝜕𝜇𝐽
𝜇

𝐴
= −

𝑔2
s𝑁f

8𝜋2
1
2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 = −
𝑔2

s𝑁f

32𝜋2 𝜖
𝜇𝜈𝜌𝜎𝐺𝑐𝜇𝜈𝐺

𝑐
𝜌𝜎 . (10)

It generalizes the usual Adler-Bell-Jackiw 𝑈 (1)𝐴 anomaly in terms of the following extensions or
substitutions: Trflavor1 = 𝑁f , Trcolor(𝑡𝑐𝑡𝑐

′) = 1
2𝛿
𝑐𝑐′ with the color generator matrix 𝑡𝑐 ≡ 𝜆𝑐/2, and

the replacement of the electric charge 𝑒 by the strong coupling 𝑔s. Note that there is no anomaly
in the conservation of the octet analog of the 𝑈 (1)𝐴 current, since Trflavor( 12𝜆

𝑎) = 0 for the 𝑆𝑈 (3)
flavor matrices, as the Gell-Mann matrices are traceless by definition.

In the “path-integral language", the 𝑈 (1)𝐴 anomaly arises due to the Jacobian in the fermion
measure [9, 10] (D𝜓 ′D𝜓̄ ′ = 𝐽−2D𝜓D𝜓̄) resulting from the flavor-singlet axial transformation
𝜓 𝑓 → 𝜓 ′

𝑓
= ei𝛽𝛾5𝜓 𝑓 :

𝛽

∫
d4𝑥 𝜕𝜇 𝑗

𝜇

𝐴

!
= −i ln(𝐽−2) = −𝛽 2𝑁f

𝑔2
s

32𝜋2

∫
d4𝑥 𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈 . (11)

3.1 The second problem: perturbative considerations of the 𝑼(1)𝑨 anomaly

So it seems that the𝑈 (1)𝐴 symmetry of the QCD Lagrangian is broken by the𝑈 (1)𝐴 anomaly,
which acts as a quantum obstruction to the classical symmetry expressed by the conservation of the
𝑈 (1)𝐴 current at tree-level in the chiral limit. Note, however, that the integrand in Eq. (11),

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 =
𝑔2

s
32𝜋2 𝜖

𝜇𝜈𝜌𝜎Tr(𝐺𝜇𝜈𝐺𝜌𝜎) = 𝜕𝜇𝐾𝜇 , (12)

is a total divergence with the Chern-Simons current

𝐾𝜇 =
𝑔2

s
16𝜋2 𝜖

𝜇𝜈𝜌𝜎Tr
(
𝐴𝜈𝐺𝜌𝜎 + i2

3 𝐴𝜈𝐴𝜌𝐴𝜎

)
(13)

(see e.g. Refs. [2, 11] for more details). This means that the𝑈 (1)𝐴 anomaly of QCD is irrelevant in
the framework of perturbation theory when only perturbative (continuous) so-called small gauge
transformations are applied. This result even holds for the gauge-invariant, Lorentz-invariant, 𝐶-
and 𝑃 × 𝑇-invariant, but 𝑃- and 𝑇-breaking theta term of QCD,

L 𝜃QCD = −𝜃
𝑔2

s
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 = −𝜃
𝑔2

s
32𝜋2

1
2𝜖
𝜇𝜈𝜌𝜎𝐺𝑐𝜇𝜈𝐺

𝑐
𝜌𝜎 , (14)

added to the usual QCD Lagrangian

LQCD = −1
4
𝐺𝑐𝜇𝜈𝐺

𝑐𝜇𝜈 +
∑︁

flavor 𝑓
𝑞 𝑓

(
i𝛾𝜇 (𝜕𝜇 − i𝑔𝐴𝑐𝜇𝑡

𝑐) − 𝑚 𝑓

)
𝑞 𝑓 . (15)

Since the Lagrangian term (14) is proportional to a total divergence 𝜕𝜇𝐾𝜇 it would be irrelevant as
well – in perturbation theory!

3.2 The solution of the second problem: 𝑼(1)𝑨 anomaly and large gauge transformations

However, non-perturbative (large) gauge transformations (so-called instantons) exist in Eu-
clidean space-time R4, such that ∫

R4
𝑑4𝑥E

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐
𝜇𝜈 = 𝑛 ∈ Z (16)

exists which is topologically protected and nonzero in general.
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3.2.1 Instantons in classical Yang-Mills theory

In Euclidean space-time (𝑡 → −i𝜏, 𝜕𝑡 → i𝜏, 𝑔𝜇𝜈 → −𝛿𝜇𝜈) the Yang-Mills action is positive,

𝑆E = −i𝑆M(𝑡 → −i𝜏) = 1
2

∫
𝑑4𝑥E Tr(𝐺E

𝜇𝜈𝐺
E
𝜇𝜈)

!
≥ 0 . (17)

Rescaling 𝐴E
𝜇 → 𝐴E

𝜇/𝑔s and then dropping the superscript E, we get

𝑆E =
1

4𝑔2
s

∫
𝑑4𝑥E Tr

(
(𝐺𝜇𝜈 ∓ 𝐺̃𝜇𝜈) (𝐺𝜇𝜈 ∓ 𝐺̃𝜇𝜈)

)
︸                                                      ︷︷                                                      ︸

≥0

± 1
2𝑔2

s

∫
𝑑4𝑥E Tr

(
𝐺𝜇𝜈𝐺̃𝜇𝜈

)
︸                             ︷︷                             ︸

≡8𝜋2𝑄/𝑔2
s

, (18)

where (see e.g Ref. [11] for more details)

𝑄 =
1

16𝜋2

∫
d4𝑥E Tr

(
𝐺𝜇𝜈𝐺̃𝜇𝜈

)
=

∮
𝑆3
𝑑𝜎𝜇

−1
24𝜋2 𝜖𝜇𝜈𝛼𝛽Tr

(
(𝜕𝜇Ω)Ω†(𝜕𝛼Ω)Ω†(𝜕𝛽Ω)Ω†

)
(19)

is the topological charge or Pontryagin index or second Chern class, i.e. an integer determined by
the large gauge transformation Ω(𝑛𝜇). Here 𝑛𝜇 is a unit 4-vector in Euclidean space which specifies
in which direction |𝑥E | → ∞ is assumed on the spatial 3-sphere, 𝑆3, at infinity of the Euclidean
space R4. Note that

𝐴𝜇
|𝑥 |→∞
−−−−−→ −i(𝜕𝜇Ω)Ω† (20)

corresponds to a pure gauge case, such that 𝐺𝜇𝜈
|𝑥 |→∞
−−−−−→ 0 and the action 𝑆E is finite. In this

way, Euclidean space-time at infinity becomes isomorphic to an 𝑆3 sphere, and Ω(𝑛𝜇) specifies the
mapping from this 𝑆3 sphere at infinity into the group-valued 𝑆3 sphere which is isomorphic to the
color group 𝑆𝑈 (2) in the two-color scenario or to the subgroup 𝑆𝑈 (2) ⊂ 𝑆𝑈 (𝑁𝑐) in the general
scenario of a color group 𝐺 = 𝑆𝑈 (𝑁𝑐) with 𝑁𝑐 colors. Note that the normalization 1/(24𝜋2) in
Eq. (19) is the inverse of the product 2𝜋2 × 3! × Tr(12×2) = 24𝜋2 where 2𝜋2 corresponds to the
volume of a unit 3-sphere and 3! to the number of permutations of the pure gauge terms while the
𝑆𝑈 (2) relation for the three Pauli matrices i𝜏1i𝜏2i𝜏3 = 1 is applied under the trace.

The space of mappings of 𝑆3 → 𝐺 consists of an countably infinite set of isolated classes of
the homotopy Π3(𝐺) = Z, labeled by the winding number 𝑄 of Eq. (19) and by the large gauge
transformation (20) with Ω𝑛 (= (Ω1)𝑛) and 𝑄 = 𝑛. Note that mappings belonging to one class
cannot be continuously deformed into those belonging to any other classes.

3.3 Instantons and the solution of the 𝑼(1)𝑨 problem

As discussed and stated in Eq. (16), the non-perturbative (large) gauge transformations (so-
called instantons) exist in Euclidean space-time R4 such that the topological charge

𝑄 =

∫
R

d𝑥E
𝑔2

s
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐
𝜇𝜈 = 𝑛 ∈ Z , (21)

protected by by topology, is nonzero in general, where the integrand is the topological density
𝑞(𝑥E). The self-dual field-configurations 𝐺𝜇𝜈 = +𝐺̃𝜇𝜈 give 𝑄 ≥ 0 and are called instantons (if
𝑄 ≠ 0). The anti-self-dual configurations 𝐺𝜇𝜈 = −𝐺̃𝜇𝜈 with 𝑄 < 0 are called anti-instantons. In
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both cases the Euclidean actual 𝑆E in Eq. (18) is not only bounded by the last term in this equation,
but assumes this bound, i.e.

𝑆E =
8𝜋2 |𝑄 |
𝑔2

s
. (22)

Redefining again 𝑔s𝐴
𝐸
𝜇 → 𝐴𝜇, we see that the expression for the one-(anti-) instanton amplitude

for QCD,

A 𝐼 /𝐼
E ∝ exp

{
−

∫
d4𝑥E

(
1

8𝑔2
s
(𝐺𝑐𝜇𝜈 ∓ 𝐺̃𝑐𝜇𝜈)2 ±

8𝜋2

𝑔2
s

1
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐
𝜇𝜈

)}
∝ e−8𝜋2/𝑔2

s (𝜇) , (23)

is nonzero and proportional to e−𝑆E for |𝑄 | = 1. In the perturbative weak-coupling case, 𝑔2
s (𝜇) � 1,

the instanton/anti-instanton amplitude is therefore exponentially small. However, in the strong-
coupling regime, where 𝑔2

s (𝜇) ∼ (4𝜋)2, there is no suppression. So, the 𝑈 (1)𝐴 axial current is not
conserved in the non-perturbative regime of QCD, 𝜕𝜇𝐽

𝜇

𝐴
≠ 0. Therefore, there cannot exist a pseudo-

Goldstone boson related to the spontaneous breaking of the 𝑈 (1)𝐴 transformation, as the latter is
not a symmetry of the theory [12, 13]. Thus the 𝜂′meson is not a pseudo-Goldstone boson and there
are only 𝑁2

f − 1 pseudo-Goldstone bosons, 𝜋+, 𝜋−, 𝜋0 for 𝑁f = 2 and 𝜋+, 𝜋−, 𝜋0, 𝐾+, 𝐾−, 𝐾0, 𝐾̄0, 𝜂

for 𝑁f = 3.

4. The QCD vacuum

4.1 The third problem: instantons and non-trivial vacua in QCD

Because of the large gauge transformations 𝐴𝜇 → 𝐴
(𝑛)
𝜇 = 𝐴𝜇 − i(𝜕𝜇Ω𝑛)Ω†𝑛, 𝑛 = 𝑄, there are

infinitely many homotopy classes Π3(𝑆𝑈 (3)) = Z and QCD has a topologically non-trivial vacuum
structure with infinitely many minima, i.e. vacua |𝑛〉, at 𝑆E = 8𝜋2 |𝑄 |/𝑔2

s , labelled by the winding
number (topological charge) 𝑄 = 𝑛. Furthermore, instantons as large gauge transformations do
not only solve the 𝑈 (1)𝐴 problem [12, 13], but also induce transitions |𝑛〉 → |𝑛 + 1〉 etc. between
different vacua.

Thus there are further problems on the horizon. Any naively chosen vacuum of QCD, say
|0〉𝑛 ≡ |𝑛〉 with 𝑛 arbitrary but fixed, has the following properties which are in contradiction with
the usual vacuum features:

1. |0〉𝑛 is unstable under, e.g., the one-instanton action: Ω1 : |0〉𝑛 → |0〉𝑛+1 which transforms
the chosen vacuum to a different, but degenerate state. Thus the vacuum |0〉𝑛 is not unique.

2. Furthermore, it is not gauge-invariant as large gauge transformations show.

3. Finally, it violates the cluster decomposition 〈𝑂1𝑂2〉
!
= 〈𝑂1〉〈𝑂2〉 which can be traced back

to causality, unitarity and locality of the underlying field theory [5, 14]; e.g.let the operator
𝑂1 be the the axial charge operator 𝑄†(𝑡E) and the operator 𝑂2 be the corresponding axial
charge 𝑄(0) at Euclidean time 𝑡E = 0, then both 〈𝑛|𝑂1 |𝑛〉 = 0 and 〈𝑛|𝑂2 |𝑛〉 = 0 hold, but
because of the chiral anomaly (and more specifically the Atiyah-Singer index theorem, see,
e.g., Ref. [8]) there is still

〈𝑛|𝑂1𝑂2 |𝑛〉 = 〈𝑛|𝑂1 |𝑛 + 2〉〈𝑛 + 2|𝑂2 |𝑛〉 ≠ 0 , (24)

even for 𝑡E →∞, manifestly violating the cluster decomposition theorem [15].
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4.2 The solution of the third problem: theta vacuum in QCD

A solution to these stated problems of QCD is to assume that the true vacuum of QCD is a
superposition of all |𝑛〉 vacua. This can be achieved with the help of a newly introduced phase
parameter 𝜃:

|vac〉𝜃 =
+∞∑︁
𝑛=−∞

ei𝑛𝜃 |𝑛〉 . (25)

Then the action of a large gauge transformation, say Ω1, would only lead to a phase shift of the
vacuum,

Ω1 : |vac〉𝜃 → e−i𝜃 |vac〉𝜃 . (26)

In this way the three problems affecting the trivial QCD vacua are circumvented.
Note that the phase 𝜃 is free but unique since

𝜃′ 〈vac|e−i𝐻𝑡 |vac〉𝜃 = 𝛿𝜃−𝜃′ × 𝜃 〈vac|e−i𝐻𝑡 |𝑣𝑎𝑐〉𝜃 (27)

has to hold. Thus 𝜃 should be viewed as another parameter of strong interaction physics (similar
to the quark-mass parameters 𝑚𝑢 or 𝑚𝑑 etc.). Because of the phase structure e𝑖𝑛𝜃 , it multiplies the
topological charge 𝑄 = 𝑛 as given in the Euclidean integral (21). The pertinent integrand of 𝑄, the
topological density, multiplied by 𝜃 corresponds therefore to a Lagrangian term which manifestly
violates 𝑃 and 𝑇 and, assuming the 𝐶𝑃𝑇 theorem to hold, as it should for a local quantum field
theory, also 𝐶𝑃. This is the so-called theta-term of QCD, and the full QCD Lagrangian reads

LQCD = L𝐶𝑃QCD + L�
�𝐶𝑃

QCD = L𝐶𝑃QCD − 𝜃
𝑔2

s
32𝜋2

1
2
𝜖 𝜇𝜈𝜌𝜎𝐺𝑎𝜇𝜈𝐺

𝑎
𝜌𝜎 . (28)

An axial rotation of any quark field of flavor 𝑓 , 𝑞 𝑓 → ei𝛽𝛾5𝑞 𝑓 ≈ (1 + i𝛽𝛾5)𝑞 𝑓 , would alter, via the
induced chiral𝑈 (1)𝐴 anomaly (11) the coefficient of the theta term and affect the QCD Lagrangian
in the following way:

L → L𝐶𝑃 − 2𝛽
∑︁
𝑓

𝑚 𝑓 𝑞 𝑓 𝑖𝛾5𝑞 𝑓 − (𝜃 + 2𝑁f𝛽)
𝑔2

s
32𝜋2𝐺

𝑎
𝜇𝜈𝐺̃

𝑎𝜇𝜈 . (29)

This has three implications. First, the real parameter of strong interaction physics is not 𝜃, but the
so-called 𝜃 given by

𝜃 = 𝜃 + arg detM , (30)

i.e. the sum of the original 𝜃 plus the phase of the determinant of quark mass matrixM. Second,
the 𝜃 parameter is an angle, 𝜃 ∈ (−𝜋, 𝜋], since, e.g., the instanton amplitude in presence of the theta
term is proportional to a phase,

A𝜃 ∝ e−𝑆E ∝ e
−

∫
d4𝑥E

(
1

8𝑔2
s
(𝐺2±𝐺̃)2∓( 8𝜋2

𝑔2
s
∓i𝜃) 1

32𝜋2𝐺𝐺̃

)
∝ e
− 8𝜋2

𝑔2
s (𝜇)
±i𝑄𝜃

. (31)

As e𝑖𝑄𝜃 is periodic and 𝑄 ∈ Z, 𝜃 has to be an angle parameter, 𝜃 = 𝜃 + 2𝜋. Third, if a quark
mass 𝑚 𝑓 of any flavor 𝑓 were zero, then the 𝜃 angle could be removed by a suitable axial rotation
with 2𝛽 𝑓 = −𝜃. The obvious candidate for this to happen is the 𝑢-quark, the quark flavor with the
lightest quark mass. By now, however, it can be excluded that its quark mass is compatible with
zero [3].
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5. Strong 𝑪𝑷 problem

The resolution of the 𝑈 (1)𝐴 problem via instantons and the complicated nature of the QCD
vacuum effectively adds an extra term to the QCD Lagrangian

L𝜃 = −𝜃
𝑔2

s
32𝜋2

1
2
𝜖 𝜇𝜈𝜌𝜎𝐺𝑎𝜇𝜈𝐺

𝑎
𝜌𝜎 , (32)

which explicitly violates parity 𝑃 and time-reflection invariance 𝑇 , since only 𝜖0123 and any of its
permutations are nonzero. As it conserves charge conjugation invariance 𝐶, it violates also 𝐶𝑃.
One of the consequences of these symmetry violations is the prediction of the (possible) existence
of permanent electric dipole moments (EDMs) for subatomic particles of strong interaction physics.

5.1 𝑪𝑷 violation and electric dipole moments

Classically an electric dipole moment vector is given by separated electric charges of an overall
charged or neutral entity multiplied by their relative displacement vectors, ®𝑑 = Σ𝑖®𝑟𝑖𝑒𝑖 . Since the
displacement vectors are a polar vectors, the classical EDM vector ®𝑑 should also be polar. However,
for a subatomic particle with non-vanishing mass in its rest-system there does not exist any vector
which could serve as a polar candidate, since, e.g., the velocity of the particle is zero there. Only
the spin of the particle remains as a vector, but it is an axial vector. This does not matter for the
magnetic moment 𝜇 of a particle since the scalar product of its spin vector ®𝑆 and the magnetic field
®𝐵 gives a scalar term in the HamiltonianH , while in the case of the electric dipole moment 𝑑 such
a product with the electric fields leads to a pseudoscalar term,

H = −𝜇
®𝑆
𝑆
· ®𝐵 − 𝑑

®𝑆
𝑆
· ®𝐸 , (33)

which breaks both 𝑃 and 𝑇 , i.e.

O𝑃,𝑇HO†𝑃,𝑇 = −𝜇
®𝑆
𝑆
· ®𝐵 + 𝑑

®𝑆
𝑆
· ®𝐸 (34)

under 𝑃 or 𝑇 . It seems that the existence of an electric dipole moment of a subatomic particle (or
a quantum mechanical particle in general) is closely connected to the explicit breaking of these
symmetries. But would spontaneous symmetry breaking perhaps also be sufficient to induce EDMs?
The answer must be no according to the following well-known theorem (see e.g. Refs. [16–19]):

In any finite quantum system in the absence of any explicitly broken symmetry there
cannot exist a spontaneously broken ground state or stationary state.

In fact, the question might even come up why this theorem does not apply to the existence of
nonzero magnetic moments of the electron, muon, proton, neutron, other hadrons, baryons, nuclei
etc. [3]. Well, as stated in Ref. [20], this theorem applies but the solution is trivial: The non-zero
value of the total angular momentum (i.e. the spin in the case of subatomic particles) suffices to
induce the (rotational) symmetry breaking since it defines an axis and direction (in the laboratory
frame) for the projection of the magnetic moment, which shares the same axial-vector properties as
the spin. The appearance of a nonzero magnetic moment for a particle without any spin or angular
momentum is forbidden and would indeed come as a surprise.
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The existence of a non-zero spin alone, however, does not suffice to generate, via spontaneously
symmetry breaking, a permanent 4 electric dipole moment, as the EDM could align in the direction
of the spin or opposite to this direction. This resembles the well-known case of the discrete-
symmetry splitting in a double-well potential which will be discussed next.

5.1.1 Double-well potential and spontaneously symmetry breaking

Let us compare what classical physics and what quantum physics predict for the scenario given
in Fig. 1. There, we start out with the symmetric case (state 𝑐1 in the classical world and 𝑞1 in the
quantum world). Then we introduce explicitly a small perturbation of the symmetry (as described
by the classical and quantum states 𝑐2 and 𝑞2, respectively). Finally, we restore the symmetry of
the underlying dynamics, in this case the double-well potential. In the classical world, the final
state 𝑐3 differs from the initial one 𝑐1, although the symmetry of the potential is restored, since
the sphere is located in that half of the potential which was preferred by the explicit symmetry
breaking at stage 2. In contrast, the original symmetric state 𝑞1 is restored in the quantum scenario.
This follows from tunneling in quantum mechanics which restores with finite probability in some
given time interval the original symmetric configuration, depending on the height and the width of
the tunneling barrier(s). Even if a quantum system is prepared in an asymmetrically and therefore

x

(c1)

x

(c2)

x

(c36=c1)

x

x

(q1)

x

x

(q2)

x

x

(q3=q1)
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a
ss
ic
a
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q
u
an

tu
m

Jörg Pretz@ 2017

Figure 1: Comparison of classical and quantum-mechanical states (c𝑖 and q𝑖 , respectively) for the double-
well potential 𝑉 (𝑥), centered at 𝑥 = 0, for the scenario 𝑖 = 1: symmetric case→ 𝑖 = 2: explicit perturbation
of the symmetry→ 𝑖 = 3: restoration of the symmetry of the potential. In the classical case the stationary
states are indicated by the position of the sphere and the possible fall directions of the sphere. In the
quantum-mechanical case a sketch of the ground state and first excited state are given.

4The existence of an induced electric dipole moment, however, is compatible with the theorem since the direction
and presence of the applied electric field provides the explicit symmetry breaking of the rotational symmetry.
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non-stationary state, it will eventually explore, via tunneling, the full available configuration space,
as long as the height and widths of the tunneling barriers are finite.

The message is therefore that in quantum mechanics asymmetric stationary states of finite
systems can only exist in the presence of an explicitly broken symmetry.

5.2 The fourth problem: a vanishing small electric dipole moment of the neutron

So the explicit symmetry breaking of the discrete symmetries 𝑃 and 𝑇 is a necessary precon-
dition for the existence of an permanent electric dipole moment of a particle in quantum mechanics
and of a sub-atomic particle in particular. Note that the theta-term Lagrangian (32) provides such an
explicit symmetry breaking, which because of the coupling to gluons, should be of special impor-
tance for hadrons (and of lesser importance due to additional couplings to quark-loops for leptons).
The “classical case" is the EDM of the neutron which has been studied since the mid-50s of last
century beginning with the work of Smith, Purcell and Ramsey [21]. Purely, by naive dimensional
arguments, the following estimate for the size of the EDM of the neutron can be given. Since the
spin of the particle is involved, the scale is set by the nuclear magnetic moment of the neutron.
However, the fact that there wouldn’t be a theta-term if any of the quark flavors 𝑓 had a vanishing
quark mass, cf. Eq. (29), should be taken care of as well. An efficient way to so is via the ratio of
the reduced quark mass of light quarks,

𝑚∗ =
𝑚𝑢𝑚𝑑𝑚𝑠

𝑚𝑢𝑚𝑑 + 𝑚𝑢𝑚𝑠 + 𝑚𝑑𝑚𝑠
≈ 𝑚𝑢𝑚𝑑

𝑚𝑢 + 𝑚𝑠
(35)

to ΛQCD, the scale of long-range, non-perturbative QCD effects. This ratio would vanish if any
quark mass were zero. In this way the magnitude of the electric dipole moment of the neutron can
be estimated as

|𝑑𝑛 | ' |𝜃 | ·
𝑚∗𝑞

ΛQCD
· 𝑒

2𝑚𝑛
∼ |𝜃 | · 10−2 · 10−14 e cm ∼ |𝜃 | · 10−16 e cm . (36)

This estimate should be compared with the present-day experimental bound on the neutron EDM,

|𝑑exp.
𝑛 | < 1.8 · 10−26 e cm [90% C. L.], (37)

from the nEDM-collaboration [22]. Thus empirically, 𝜃 should be of the size or smaller than 10−10,
while a naive dimensional analysis predicts 𝜃 ∈ (−𝜋, 𝜋] to be of order unity. Note that the other
𝐶𝑃-violating phase of the Standard Model, 𝛿KM of the CKM-matrix is indeed of order O(1), cf.
Ref. [3].

This large mismatch between the naive expectation and the empirical bound on the coefficient
of the QCD theta-term is called the strong 𝐶𝑃 problem.

6. Resolutions of the strong CP problem

Various approaches were suggested to solve the strong CP problem, some are listed in Ref. [2].
For instance, fine-tuning motivated by many-world scenarios, anthropic principle etc. maybe a way
out. Another possibility would be a spontaneously broken 𝐶𝑃 symmetry such that 𝜃 = 0 at the
Lagrangian level. However, this does not exclude that a finite non-vanishing 𝜃 ≠ 0 is reintroduced
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at the loop level, and anyhow, the already known 𝐶𝑃-breaking mechanism in the Standard Model
via the KM-mechanism [23] predicts 𝐶𝑃-breaking of explicit and not spontaneous nature.

The introduction of an additional chiral symmetry might be also a possibility. One way was
already discussed, namely the vanishing of the 𝑢-quark mass. Modern lattice-QCD calculations
exclude this scenario as 𝑚𝑢 = 2.16+0.49

−0.26 MeV [3].
The possibility that is most promising and that we will follow here was introduced by Peccei

and Quinn in 1977 [24, 25].

6.1 Peccei-Quinn symmetry and the axion

In fact, a new global chiral 𝑈 (1)PQ symmetry, namely the Peccei-Quinn (PQ) symmetry, is
imposed on the Standard Model (SM). For momentum scales |𝑝 | < 𝑓𝑎, the global PQ-symmetry is
realized non-linearly, i.e. spontaneously broken, where 𝑓𝑎 is the order parameter associated with
the spontaneous breaking of the 𝑈 (1)PQ symmetry [24]. In this way the static angular parameter
𝜃 (mod 2𝜋) is effectively replaced by a dynamical pseudoscalar field 𝑎(𝑥) which transforms under
Peccei-Quinn symmetry as

𝑈 (1)PQ : 𝑓 −1
1 𝑎(𝑥) → 𝑓 −1

𝑎 𝑎(𝑥) + 𝛼PQ (38)

where 𝛼PQ is the global 𝑈 (1)𝐴 group angle. As Weinberg and Wilczek showed in 1978, there
necessarily belongs a corresponding Nambu-Goldstone boson to this hidden symmetry, an a priori
massless neutral pseudoscalar particle, the so-called axion [26, 27], where the name “axion" was
coined by Wilczek.

The SM Lagrangian including the theta-term is then augmented by the axion kinetic term and
axion interactions to the standard model matter particles, here represented by the spinor field 𝜓,
where both terms are invariant under the PQ-transformation (38), and finally the coupling of the
axion field to the gluons via the topological density:5

LPQ-SM = LSM − 𝜃
𝑔2

s
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 + 1
2
𝜕𝜇𝑎𝜕

𝜇𝑎 + Linv
PQ [𝜕

𝜇𝑎/ 𝑓𝑎, 𝜓, 𝜓̄] +
𝑎

𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 . (39)

The pertinent PQ (Noether) current

𝐽
𝜇

PQ =
𝜕LPQ-SM

𝜕𝜇𝑎
= 𝜕𝜇𝑎 +

𝜕Linv
PQ

𝜕𝜇𝑎
(40)

is then anomalous:

𝜕𝜇𝐽
𝜇

PQ = 𝜕𝜇

(
𝜕𝜇𝑎 +

𝜕Linv
PQ

𝜕𝜇𝑎

)
=

1
𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 . (41)

6.2 The effective potential for the axion field

From the last relation or directly from (39) we can extract the (effective) potential of the axion
field as

𝑉eff (𝑎) = −
𝑎

𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 (42)

5In Ref. [2] the weight 1/ 𝑓𝑎 in front of interaction term between the axion and the topological density is replaced by
𝜉/ 𝑓𝑎 , where 𝜉 is the so-called anomaly coefficient which counts the number of Peccei-Quinn carrying particles. In other
publications, 1/ 𝑓𝑎 is replaced by 𝐶𝐺/ 𝑓𝑎 anticipating the coupling of axion-like-particles to the gluonic term.
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in the usual way, such that
𝜕𝑉eff (𝑎)
𝜕𝑎

= − 1
𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 , (43)

cf. Ref. [2]. In order to get the expectation value of this quantity in the vacuum (actually in the theta
vacuum), namely

〈
𝜕𝑉eff (𝑎)
𝜕𝑎

〉
, we apply the path-integral formulation:

〈𝑂̂ (𝜙)〉 =
∫
D𝜙 𝑂 (𝜙) 𝑒𝑖

∫
d4𝑥 L[𝜙] (44)

where 𝑂̂ (𝜙) is an operator formulated in terms of a field operator 𝜙, while 𝑂 (𝜙) is its classical
analog. Here we have skipped and will skip the hats on top of 𝑉eff , the axion field 𝑎, etc. In this
way we get〈
𝜕𝑉eff (𝑎)
𝜕𝑎

〉
= − 1

𝑓𝑎

𝑔2
s

32𝜋2

〈
𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈
〉
= − 1

𝑓𝑎

𝑔2
s

32𝜋2

∫
D𝐴𝜇D𝜓D𝜓̄D𝑎 𝐺𝑐𝜇𝜈𝐺̃𝑐𝜇𝜈ei

∫
d4𝑥LPQ-SM

= − 1
𝑓𝑎

𝑔2
s

32𝜋2

∫
D𝐴𝜇D𝜓D𝜓̄D𝑎 𝐺𝑐𝜇𝜈𝐺̃𝑐𝜇𝜈e

i
∫

d4𝑥 (LSM+Linv
PQ+(−𝜃+

𝑎
𝑓𝑎
) 𝑔2

s
32𝜋2𝐺

𝑏
𝜇𝜈𝐺̃

𝑏𝜇𝜈)
.

(45)

Note that the right-hand side of this equation is not zero in general, although

𝐺𝑐𝜇𝜈𝐺̃
𝑐𝜇𝜈 𝑃, 𝑇←→ −𝐺𝑐𝜇𝜈𝐺̃𝑐𝜇𝜈 (46)

under parity 𝑃 and time reflection 𝑇 . The reason why the right-hand side can be non-zero is
the presence of the theta term −

∫
d4𝑥 𝜃

𝑔2
s

32𝜋2𝐺
𝑏
𝜇𝜈𝐺̃

𝑏𝜇𝜈 in the exponent of the path integral which
switches its sign accordingly and which can counter the sign change in (46) when the exponential
term is expanded accordingly.

Let us now write the axion field 𝑎(𝑥) as

𝑎(𝑥) = 〈𝑎〉 + 𝛿𝑎(𝑥) (47)

where 〈𝑎〉 is the vacuum expectation value (i.e. a constant) and 𝛿𝑎(𝑥) is the fluctuating field around
the vacuum expectation value. In this way we can rewrite Eq. (45) as〈

𝜕𝑉eff (𝑎)
𝜕𝑎

〉
= − 1

𝑓𝑎

𝑔2
s

32𝜋2

∫
D𝐴𝜇D𝜓D𝜓̄ ei

∫
d4𝑥LSM 𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈 ei
(
−𝜃+ 〈𝑎〉

𝑓𝑎

)
𝑔2

s
32𝜋2

∫
d4𝑥 𝐺𝑏

𝜇𝜈𝐺̃
𝑏𝜇𝜈

×
∫
D𝛿𝑎 ei

∫
d4𝑥 (Linv

PQ+
𝛿𝑎
𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑑
𝜇𝜈𝐺̃

𝑑𝜇𝜈)
. (48)

Note that this expression is periodic (with period (2𝜋) in the parameter 𝜃𝑎 ≡ −𝜃 + 〈𝑎〉/ 𝑓𝑎. In fact,
it is an odd function of this parameter, since 𝑔2

𝑠

32𝜋2

∫
d4𝑥 𝐺

𝜇𝜈

𝑏
𝐺̃𝑏𝜇𝜈 = 𝑛 ∈ Z switches its sign, if

an instanton configuration is replaced by the corresponding anti-instanton configuration with the
same absolute value of the winding number, |𝑛|. Since also 𝐺𝑐𝜇𝜈𝐺̃𝑐𝜇𝜈 switches its sign under this
replacement, the overall expression (48) switches then its sign.
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Especially, in the one-(anti)-instanton approximation the exponential function in the second
but last line of Eq. (48) becomes just 𝑒±𝑖 𝜃𝑎 . Combined with the implicit sign change of 𝐺𝑐𝜇𝜈𝐺̃𝑐𝜇𝜈

when switching from an instanton to an anti-instanton, expression (48) reads then〈
𝜕𝑉eff (𝑎)
𝜕𝑎

〉
∝ sin(𝜃𝑎) = sin(−𝜃 + 〈𝑎〉/ 𝑓𝑎) (49)

in the one-instanton approximation, cf. Ref. [28].
If in Eq. (48) the parameter 𝜃𝑎 is set to zero, i.e.

〈𝑎〉 := 𝜃 𝑓𝑎 , (50)

then there isn’t any term left in the exponent of the path integral which could counter the sign change
in Eq. (46), since the fluctuating field 𝛿𝑎(𝑥) corresponds to a pseudoscalar particle (i.e. the axion)
which also changes sign under 𝑃 or 𝑇 , such that∫

𝐷𝛿𝑎 exp
(
𝑖

∫
d4𝑥(Linv

PQ +
𝛿𝑎

𝑓𝑎

𝑔2
𝑠

32𝜋2𝐺
𝑑
𝜇𝜈𝐺̃

𝑑𝜇𝜈)
)

is invariant under both operations. Thus, by inserting the condition (50) into (48), we get the
extremum (in fact minimum) condition for the expectation value of 𝑉eff (𝑎), see Ref. [2] :〈

𝜕𝑉eff (𝑎)
𝜕𝑎

〉����
〈𝑎〉=𝜃 𝑓𝑎

= − 1
𝑓𝑎

𝑔2
s

32𝜋2

〈
𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈
〉����
〈𝑎〉=𝜃 𝑓𝑎

= 0 . (51)

This is compatible with the observation that Eq. (48) is an odd function of the parameter 𝜃𝑎. This,
in turn, is compatible with the vanishing of the argument of the sin-function in the one-instanton
approximation (49). So the 𝜃 term is canceled by the 〈𝑎〉 contribution and the strong 𝐶𝑃 problem
ist solved.

6.2.1 Mass term of the axion

What is about the axion? What is, e.g., its mass?
If one neglects the 𝑈 (1)𝐴 anomaly of QCD, i.e. the term (−𝜃 + 𝑎

𝑓𝑎
) 𝑔

2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 in the
Lagrangian (39), then indeed there are no constraints on the expectation value of the axion field,
except that 〈𝑎〉/ 𝑓𝑎 should be interpreted as an angular-valued field:

0 ≤ 〈𝑎〉
𝑓𝑎
≤ 2𝜋 . (52)

The axion would be massless.
However, the inclusion of the QCD anomaly generates a potential for the axion field that is

periodic in the effective vacuum angle 𝜃𝑎 ≡ −𝜃 + 〈𝑎〉/ 𝑓𝑎. The pertinent generating functional for
the effective potential in Euclidean space reads 6

𝑍 (𝜃𝑎) = e−
∫

d4𝑥E 〈𝑉 E
eff 〉 =

〈
ei𝜃𝑎

𝑔2
s

32𝜋2
∫

d4𝑥 𝐺𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈

〉
. (53)

6Note that the 𝑒±𝑖 𝜃 · · · contributions in Euclidean space still describe pure phases (as in Minkowski space).
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Since for instanton-like field configurations 𝑔2
s

32𝜋2

∫
d4𝑥 𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈 = 𝑛 ∈ Z holds, the generating
functional 𝑍 (𝜃𝑎) has to be periodic in the angle 𝜃𝑎:

𝑍 (𝜃𝑎) =
∞∑︁

𝑛=−∞
ei𝑛𝜃𝑎𝑍𝑛 , (54)

see e.g. Ref. [11]. Moreover, Eq. (53) has to be an even function in 𝜃𝑎 as the odd terms do not
survive the transformations (46). Thus 𝑍 (𝜃𝑎) =

∑∞
𝑛=−∞ ei𝑛𝜃𝑎𝑍 |𝑛 |, implying 𝑍−𝑛 = 𝑍𝑛 and

𝑍 (𝜃𝑎) = e−
∫

d4𝑥E 〈𝑉 E
eff 〉 = 1

2

〈
ei𝜃𝑎

𝑔2
s

32𝜋2
∫

d4𝑥 𝐺𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈

+ e−i𝜃𝑎
𝑔2

s
32𝜋2

∫
d4𝑥 𝐺𝑐

𝜇𝜈𝐺̃
𝑐𝜇𝜈

〉
. (55)

Again in the one-instanton approximation (here signaled by '), but now in Minkowski space 7 the
generating functional is given by

〈𝑉eff〉 ' ln
(
1 − cos 𝜃𝑎 · 𝐶𝑎1

𝑚∗𝑞
ΛQCD

· Λ4
QCD

)����
𝑎=〈𝑎〉

≈ − 𝐶𝑎1 · 𝑚∗𝑞Λ3
QCD cos

(
−𝜃 + 𝑎

𝑓𝑎

)����
𝑎=〈𝑎〉

+ O
(
(𝑚∗𝑞/ΛQCD)2

)
, (56)

where the first contribution of the logarithm results from the trivial winding number configuration.
This contribution can be absorbed by the normalization of the path integral or, alternatively,
corresponds to a finite, 𝜃𝑎-independent shift of the effective potential by a value proportional to
𝐶𝑎0Λ

4
QCD for dimensional reasons. The coefficient 𝐶𝑎0 ∼ O(1) and ΛQCD provides the scale in the

non-perturbative regime of QCD where 𝑔s is so big that 𝑍 |±1 | ∼ exp(−8𝜋2/𝑔2
𝑠) can become sizable.

The term 𝑚∗𝑞/ΛQCD with the reduced quark mass 𝑚∗𝑞 (e.g., 𝑚∗𝑞 = 𝑚𝑢𝑚𝑑/(𝑚𝑢 + 𝑚𝑑) for two
flavors) takes into account that the 𝜃𝑎 term can be rotated to zero if any of the quark masses
would vanish, cf. Eq. (29). The coefficient 𝐶𝑎1 ∼ 𝑂 (1) is positive. Thus 〈𝑉eff〉 indeed takes the
minimum value at the extremum condition 〈𝑎〉 = 𝜃 𝑓𝑎. Then it follows automatically – again in the
one-instanton approximation – that〈

𝜕𝑉eff

𝜕𝑎

〉
' 1

𝑓𝑎
𝐶𝑎1 · 𝑚∗𝑞 · Λ3

QCD sin
(
−𝜃 + 〈𝑎〉

𝑓𝑎

)
〈𝑎〉=𝜃 𝑓𝑎−−−−−−−→ 0 , (57)〈

𝜕2𝑉eff

𝜕𝑎2

〉
= − 1

𝑓𝑎

𝑔2
s

32𝜋2
𝜕

𝜕𝑎

〈
𝐺𝑐𝜇𝜈𝐺̃

𝑐𝜇𝜈
〉
' 1
𝑓 2
𝑎

𝐶𝑎1 · 𝑚∗𝑞 · Λ3
QCD cos

(
−𝜃 + 〈𝑎〉

𝑓𝑎

)
. (58)

Thus the (squared) mass of the axion, defined by the second curvature of the effective potential in
the ground state (=vacuum), is given by

𝑚2
𝑎 =

〈
𝜕2𝑉eff

𝜕𝑎2

〉����
〈𝑎〉=−𝜃 𝑓𝑎

' 1
𝑓 2
𝑎

𝐶𝑎1 · 𝑚∗𝑞 · Λ3
QCD > 0 . (59)

In fact, by rotating the complete 𝜃𝑎
𝑔2

s
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 term of the Lagrangian (39), with the help of a
chiral rotation 𝑞 → ei𝜃𝑎𝛾5/2𝑞 and the induced chiral anomaly (resulting from the Jacobian of the path

7The 𝜃𝑎 contributions do not change their nature (except sign) under the transition from Euclidean to Minkowski
space.
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integral measure, cf. Eq. (11) or Eq. (29)) into the reduced quark mass term−𝑚∗𝑞𝑞𝑞 → −𝑚∗𝑞𝑞ei𝛾5 𝜃𝑎𝑞

with 𝑚∗𝑞 =
𝑚𝑢𝑚𝑑

𝑚𝑢+𝑚𝑑
, one gets, again in the one-instanton approximation,

〈𝑉eff〉 ' 1
2𝑚
∗
𝑞

〈
𝑞ei𝛾5 𝜃𝑎𝑞 + 𝑞e−i𝛾5 𝜃𝑎𝑞

〉
= cos(𝜃𝑎)𝑚∗𝑞 〈𝑞𝑞〉 . (60)

Here [29, 30]

lim
𝑚𝑞→0

lim
𝑉4→∞

〈𝑞𝑞〉 = lim
𝑚𝑞→0

lim
𝑉4→∞

1
𝑉4

∫
d𝑥4

E 〈𝑞(𝑥)𝑞(𝑥)〉 < 0 but lim
𝑚𝑞→0

lim
𝑉4→∞

〈𝑞𝑖𝛾5𝑞〉 = 0 (61)

was used. Let us now replace
∑
𝑞 𝑚𝑞 〈𝑞𝑞〉 for two flavors, 𝑢 and 𝑑, by the Gell-Mann–Oakes–Renner

relation [31]
0 < 𝑓 2

𝜋𝑚
2
𝜋 = −(𝑚𝑢 + 𝑚𝑑)〈𝑞𝑞〉 + O(𝑚2

𝑞) with 𝑞 = 𝑢, 𝑑 . (62)

Then we get, in the one-instanton approximation

〈𝑉eff〉 ' −
𝑚∗𝑞

𝑚𝑢 + 𝑚𝑑
𝑓 2
𝜋𝑚

2
𝜋 cos(𝜃𝑎) , (63)

and

𝑚2
𝑎 '

〈
𝜕2𝑉eff

𝜕𝑎2

〉����
𝜃𝑎=0

=
1
𝑓 2
𝑎

𝑚∗𝑞
𝑚𝑢 + 𝑚𝑑

𝑓 2
𝜋𝑚

2
𝜋 (64)

such that

〈𝑉eff〉 ' − 𝑓 2
𝑎𝑚

2
𝑎 cos(𝜃𝑎) ≥ − 𝑓 2

𝑎𝑚
2
𝑎 (=minimum) (65)〈

𝜕𝑉eff

𝜕𝑎

〉
' 𝑓𝑎𝑚

2
𝑎 sin(𝜃𝑎) and

〈
𝜕2𝑉eff

𝜕𝑎2

〉
' 𝑚2

𝑎 cos(𝜃𝑎) . (66)

Equations (62) and (64) show that the square of the axion mass 𝑚2
𝑎 scales as 𝑚𝑞 · Λ3

QCD/ 𝑓
2
𝑎 and

confirm that 𝐶𝑎1 ∼ O(1) > 0.
If the one-instanton approximation is relaxed, the effective potential is rather given by [32]

〈𝑉eff (𝜃𝑎)〉 = − 𝑓 2
𝜋𝑚

2
𝜋

√︄
𝑚2
𝑢 + 𝑚2

𝑑
+ 2𝑚𝑢𝑚𝑑 cos 𝜃𝑎
(𝑚𝑢 + 𝑚𝑑)2

(
1 + O

(
𝑚𝑢,𝑑/𝑚𝑠

) )
, (67)

such that the 𝑎-independent term is still the usual vacuum contribution − 𝑓 2
𝜋𝑚

2
𝜋 known from chiral

perturbation theory [6, 7] but the axion mass is still given by (64), i.e.

𝑚𝑎 ≈
√
𝑚𝑢𝑚𝑑

𝑚𝑢 + 𝑚𝑑
𝑚𝜋 𝑓𝜋

𝑓𝑎
, (68)

cf. Ref. [3]. Note also that the expressions given in Eq. (67) or Eq. (65) are compatible with the
Vafa-Witten theorem [33, 34], since 〈𝑉eff (0)〉 ≤ 〈𝑉eff (𝜃𝑎)〉.

6.3 The fifth problem: the order parameter 𝒇𝒂 in the original Peccei-Quinn model

Not only the axion mass but all the interactions of the axion with standard model particles
scale with the inverse 1/ 𝑓𝑎 of the order parameter 𝑓𝑎 which is associated with the scale of the
spontaneous breaking of the Peccei-Quinn symmetry.
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In the original Peccei-Quinn model [24, 25] the value of the 𝑓𝑎 coincided with the usual
Higgs vacuum expectation value 𝑣EW ≈ 246 GeV from the electro-weak breaking, where the
framework of a two-Higgs model with vacuum expectation values 𝑣1 and 𝑣2 was employed, such
that 𝑣EW =

√︃
𝑣2

1 + 𝑣
2
2 and the axion corresponds to a common phase field of the two Higgs fields.

This prediction, namely that 𝑓𝑎 = 𝑣F, was already ruled out by experiment in the 80s of last
century. In fact, the original PQ-model predicted the branching ratio [35]

BR(𝐾+ → 𝜋+ + 𝑎) ' 3 · 10−5 · (𝑣2/𝑣1 + 𝑣1/𝑣2) , (69)

in contradistinction to the experimental bound [36]

BRexp(𝐾+ → 𝜋+ + nothing) < 3.8 · 10−8 . (70)

6.4 Invisible axion models

So, the original model with 𝑓𝑎 = 𝑣EW is empirically excluded, but the case

𝑓𝑎 � 𝑣EW (71)

is still viable [2]. This brings us to the so-called invisible axion models. Remember that 1/ 𝑓𝑎 is
the scale of the couplings of the axion to the SM matter particles and also to itself. If this scale is
very small, observations of the axion are very hard, as all its interactions are strongly suppressed
by the tiny 1/ 𝑓𝑎 scale. There is also the gravitational interaction, but that is small to start with.
This justifies the name invisible axions, as they evade almost all empirical constraints. Another
justification for that name are the light-shining-through-the-wall experiments, where the appearance
and disappearance of axions via their two-photon coupling is tested.

There are basically two classes of invisible axion models: the KSVZ model [37, 38] and the
DFSZ model [39, 40], named after the initials of the pertinent authors. In the KSVZ model there
is a scalar field 𝜎 with 〈𝜎〉 � 𝑣EW and a super-heavy quark which carry PQ charge while all
quarks and leptons only couple indirectly to the axion. In the DFSZ model there are at least two
heavy Higgs doublets and all ordinary quarks and leptons carry PQ charge. In both models at
least one electroweak singlet particle acquires a vacuum expectation value and therefore breaks PQ
symmetry. These are limiting cases and other models exist which mix the properties of both [3].

6.5 The problem of detecting invisible axions?

As mentioned, the order-parameter of PQ-symmetry breaking 𝑓𝑎 should be very large compared
with the electroweak scale such that the axion models escape almost all empirical constraints. This
on the other hand causes the problem of detecting these so-called invisible axions at all. As
mentioned the gravitational interaction of the axions is too small to be detected directly. Of course,
if their mass is small enough, axions might contribute or even exhaust the dark matter background.
But from the properties of dark matter alone, it is hard to infer the properties of the particles
contributing to it, except that the dark matter should be cold and non-thermal. So the dark matter
particles should be hardly interacting and most probably non-relativistic. For a direct or indirect
detection of axions the suppressed coupling to SM particles is essential. Most experiments focus
on the two-photon coupling.
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6.5.1 Two-photon couplings to axions

The QCD anomaly induces also an anomalous axion-coupling to two photons, as the PQ-charge
carrying quarks (and leptons) can carry electric charge as well. In the KSVZ models axions do not
couple to leptons but only to a heavy quark which, in addition to its Peccei-Quinn charge, might
also carry charge 𝑒𝑄 in units of the electric charge 𝑒 of the proton. The QCD anomaly then induces
an anomalous axion-two-photon interaction, e.g.:

LKSVZ
axion =

𝑎

𝑓𝑎

(
𝑔2

s
32𝜋2𝐺

𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈 + 3𝑒2
𝑄

𝛼em

4𝜋
𝐹𝜇𝜈 𝐹̃

𝜇𝜈

)
, (72)

where the factor 3 is the number of colors. The axion-two-photon coupling 𝑎𝛾𝛾 =
𝛼em

4𝜋 𝑓𝑎 3𝑒2
𝑄

is
corrected by axion mixing with the lowest pseudoscalar mesons, 𝜋0 and 𝜂, by 8

3𝑒2
𝑄 → 3𝑒2

𝑄 −
4𝑚𝑑 + 𝑚𝑢

3(𝑚𝑢 + 𝑚𝑑)
. (73)

In general, for KSVZ and DFSZ models the axion-two-photon Lagrangian reads

L𝑎𝛾𝛾 =
𝐺𝑎𝛾𝛾

4
𝑎𝐹𝜇𝜈 𝐹̃

𝜇𝜈 with 𝐺𝑎𝛾𝛾 =
𝛼em

𝜋 𝑓𝑎

[
𝐸

2𝑁
− 4𝑚𝑑 + 𝑚𝑢

3(𝑚𝑢 + 𝑚𝑑)

]
, (74)

where the last term stands again for the axion–𝜋0 and –𝜂 mixings. The factor 𝐸/𝑁 indicates the
relative strength of the electromagnetic (𝐸) to the strong (𝑁) anomaly. For the DFSZ-type models
it takes the value 𝐸/𝑁 = 8/3 from 3 ×

[
( 23 )

2 + ( −1
3 )

2] + (−1)2, where the factor 3 indicates again
the number of colors and the other terms are the squared charges of the 𝑢- and 𝑑-quarks and the
electron, respectively, i.e. the quarks and charged leptons of the first generation in the SM. For
KSVZ-type models, the ratio is usually set to zero, i.e. 𝐸/𝑁 = 0 assuming 𝑒𝑄 := 0.

6.5.2 Window for axion searches

For a detailed status on axion searches, I would like to refer the reader to the Particle Data
Group collaboration [3], especially to the included review 90. Axions and Other Similar Particles,
by A. Ringwald, L. J. Rosenberg, and G. Rybka and to C. O’Hare, “cajohare/AxionLimits" (2020)
github.com/cajohare/AxionLimits.

Let me here mentioned only some general classes of searches for axions and axion-like-
particles (ALPs) where the latter are still weakly-interacting pseudoscalar particles which couple
to SM particles with the strength 1/ 𝑓𝑎. Their mass, however, is not constrained by the axion-mass
relation (68) which gives a narrow band (limited by the KSVZ and DFSZ models) in the axion-
exclusion plots, but can much larger. In this way, experimentally more accessible regions above the
QCD-axion band can be addressed by experimental searches as well:

• In laboratories, involving accelerators of lasers there are the so-called light-shining-throught-
the-wall experiments which try to detect axions by hitting a wall (or beam dump) with high-
intensity laser beams or particle beams and then checking, synchronized with the temporal

8The term − 4𝑚𝑑+𝑚𝑢

3(𝑚𝑢+𝑚𝑑) results as sum from the axion-meson mixing factors, 1
2
𝑚𝑢−𝑚𝑑

𝑚𝑢+𝑚𝑑
for the 𝜋0 and −1

2 for the 𝜂
times, respectively, their couplings with the pertinent squared quark charges (resulting from the two-photon coupling),
namely 3Tr(𝜏3𝑄2) = 3(4/9 − 1/9) = 1 for the 𝜋0 and 3Tr(1𝑄2) = 3(4/9 + 1/9) = 5/3 for the 𝜂, where 3 stands for the
loop over three colors, cf. Ref. [2].
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beam profile, for photons in a cavity with a strong magnet field utilizing the axion/ALP-
two-photon coupling.

• Searches for axions from astro sources as the sun use, e.g., helioscopes, i.e.. strong magnets
that are twice a day aligned in a straight line with the sun.

• Searches for axions from gallactic sources use resonating microwave cavities, again with a
strong magnetic field.

• Indirect constraints from astrophysics apply bounds from, e.g., red giants and the supernovae,
especially SN 1987a.

• With respect to indirect constraints from cosmology, dark-matter bounds on the oscillations
of axion or ALP fields are inferred from the local dark matter background in our galaxy.

All these searches, which mostly for setup reasons are limited to rather narrow but overlapping
windows, have so far led to more and more strigent bounds, but not to a positive signal of any axion
or ALP [3].

6.6 “The empire strikes back"

Let me end on a note that even the original motivation of axions can be put in question.
In Section 6.1 we discussed that through the Peccei-Quinn mechanism the QCD theta-term can
be removed and be replaced by the QCD axion. However, this does not exclude that under UV
completion of the axion-extended Standard Model, cf. Eq. (39), a theta-term might be reintroduced,
such that the fine-tune problem is back again.9 A generic effective Lagrangian for the axion would
then read

Leff (𝑎) = L0︸︷︷︸
indep. of 𝑎

+ 1
2
(𝜕𝜇𝑎)2 +

𝜕𝜇𝑎

𝑓𝑎
𝐽𝜇 (𝜓, . . . )︸                             ︷︷                             ︸

PQ-invariant

+ 𝑎

𝑓𝑎

𝑔2
s

32𝜋2𝐺
𝑐
𝜇𝜈𝐺̃

𝑐𝜇𝜈︸                 ︷︷                 ︸
expl. PQ-breaking by QCD anomaly

+ΔLUV

(
= 𝜖𝑚4

UV cos(𝑎/ 𝑓𝑎 + 𝛿UV

)
︸                                      ︷︷                                      ︸

explicit PQ-breaking at the UV scale

, (75)

such that 𝜃 = 〈𝑎〉/ 𝑓𝑎 is calculable in terms of the following 𝐶𝑃-violating phases (in the presence
of the axion):

• The 𝐶𝑃-violating phase generated from the PQ-invariant SM via the Kobayashi-Maskawa
mechanism [23] in the CKM-matrix with at least 3 generations of quark-lepton fields: 𝛿KM;

• a 𝐶𝑃-violating phase generated from PQ-invariant, beyond the Standard Model (BSM) ex-
tensions at a scale 𝑚BSM: 𝛿BSM;

• a 𝐶𝑃-violation phase from the explicit PQ-breaking sector at the UV-scale 𝑚UV ∼ 𝑀Planck:
𝛿UV.

9I learned about this and the following from Kiwoon Choi’s Bethe lectures in Bonn, Germany, in March 2015.
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Thus the effective potential of the axion has now four terms

𝑉eff (𝑎) = 𝑉QCD(𝑎) +𝑉KM(𝑎) +𝑉BSM(𝑎) +𝑉UV(𝑎) , (76)

where the individual contributions are:

• 𝑉QCD ∼ − 𝑓 2
𝜋𝑚

2
𝜋 cos(𝑎/ 𝑓𝑎) describes the explicit PQ-breaking by low-energy QCD, where

the minimum of the potential at 𝑎 = 0 ensured that the naively expected 𝜃 ∼ 1 has been
removed.

• 𝑉KM ∼ 𝑓 2
𝜋𝑚

2
𝜋 ×𝐺2

F 𝑓
4
𝜋 ×10−5 sin 𝛿KM× sin(𝑎/ 𝑓𝑎) is the axion-potential resulting from the𝐶𝑃

violation by the KM-term of the Standard Model. 𝐺F is the Fermi constant, which appears
squared as the process has to be flavor-neutral instead of flavor changing and contributes a
dimensionless suppression factor 𝐺2

F 𝑓
2
𝜋 ∼ 10−14 in terms of chiral symmetry breaking order

parameter 𝑓𝜋 . The factor 10−5 results from the Jarlskog invariant [41].

• 𝑉BSM ∼ 𝑓 2
𝜋𝑚

2
𝜋 × (10−2–10−3) × 𝑓 2

𝜋

𝑚2
BSM

sin(𝛿BSM) × sin(𝑎/ 𝑓𝑎) is the axion-interaction potential

with BSM physics where the factor (10−2–10−3) stands for the loop suppression factor
𝑔2/(16𝜋2) in terms of some coupling constant 𝑔 to a BSM particle, while 𝛿BSM and 𝑚BSM

are the pertinent 𝐶𝑃-violating phase and the mass scale, respectively, of the BSM physics.

• 𝑉UV ∼ 𝜖𝑚4
UV sin 𝛿UV sin(𝑎/ 𝑓𝑎) is the axion-interaction to the UV-physics resulting from

ΔLUV in Eq. (75).

The three new terms in 𝑉eff , Eq. (76), generate a shifted axion vacuum expectation value 〈𝑎〉
and therefore a new value for 𝜃 = 〈𝑎〉/ 𝑓𝑎:

𝜃 ∼ 10−19 sin 𝛿KM +

10−10–10−11︷                     ︸︸                     ︷
(10−2–10−3) × 𝑓 2

𝜋

TeV2 ×
(

TeV
𝑚BSM

)2
sin 𝛿BSM + 𝜖

𝑚4
UV

𝑓 2
𝜋𝑚

2
𝜋

sin 𝛿UV (77)

with 𝜖 fine-tuned (!) to be 𝜖 < 10−10 𝑓 2
𝜋𝑚

2
𝜋/𝑚4

UV ∼ 10−88 for 𝑚UV ∼ 𝑀Planck in order to be
compatible with the empirical bound |𝜃 | . 10−10 from the upper experimental limit (37) on the
electric dipole moment of the neutron. Therefore, regardless of the existence of BSM physics near
the TeV scale, 𝜃 = 〈𝑎〉/ 𝑓𝑎 can have any value below the present bound ∼ 10−10. This in turn
leads to the following extension of the naive expression, Eq. (36), for the electric dipole moment of
the neutron (where we assume, for the sake of simplicity, that all involved quantities have positive
values)

𝑑𝑛 ∼
𝑒

2𝑚𝑛

[
𝑚∗𝑞

ΛQCD
𝜃 + 𝐺2

F 𝑓
4
𝜋 × 10−5 sin 𝛿KM + (10−2–10−3) × 𝑓 2

𝜋

𝑚2
BSM

sin 𝛿BSM

+ (10−2–10−3) × 𝑓 2
𝜋

𝑚2
UV

sin 𝛿UV

]
∼

[
𝑚∗𝑞

ΛQCD
𝜃UV + (10−2–10−3) × 𝑓 2

𝜋

𝑚2
BSM

sin 𝛿BSM

]
. (78)
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Note that 𝑑𝑛 is dominated by the 𝜃UV contribution induced by the 𝐶𝑃-violation in the PQ-breaking
sector at the UV scale 𝑚UV ∼ 𝑀Planck, 𝜃UV = 𝜖

𝑚4
UV sin 𝛿UV

𝑓 2
𝜋 𝑚

2
𝜋

, and/or by the BSM contribution near
the TeV scale. All other contributions are further suppressed. Namely, all KM contributions are
suppressed by at least 10−19, the 𝜃 contribution from BSM physics is suppressed relatively to the
direct BSM term by the factor 𝑚∗𝑞/ΛQCD, and the non-theta contribution from the UV physics is
suppressed relatively to the BSM physics by 𝑚2

BSM/𝑚
2
UV � 1.

7. Conclusions

Here my story about “hedgehogs" (problems) and “hares" (solutions) comes to a temporary
end. The “ball" for further development seems to be in the experimentalists’ court, either by direct
or indirect detection of axions or ALPs or by electric dipole moment measurements. In the latter
case, one would need more than one measured EDM, e.g.for the neutron, proton, electron, deuteron,
other light nuclei etc., to disentangle the underlying physics, see e.g. Ref. [42].

Only the future might tell whether our “fairy" tale has to be continued, whether axions or
non-vanishing electric dipole moments of sub-atomic particles might have be found, eventually.
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