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1. Introduction

The construction of complete Higher Spin (HS) interaction Lagrangian is a problem with a
permanent background interest [1–7]. The role of HS theories in the development of other theories
such as AdS/CFT increased the interest in this field even more. Construction of HS interaction
Lagrangian in itself is a very complex task and there is a need to develop non-trivial computing
techniques for even small achievements. During the previous 10-12 years, there was significant
progress in this area, especially in the understanding of the construction and structure of cubic
interaction in different approaches, dimensions, and backgrounds yet, our knowledge is far from
being complete and seems to be bounded to the idea that quartic interaction should be non-local
[8]-[16].

In parallel with these activities, the questions of possible non-locality beyond cubic level have
been discussed in Vasilev’s nonlinear theory of interacting HS fields equations in AdS background (
see [17, 18] and ref. there). In some exceptional cases, it seems like it is possible to construct local
interactions between fields with different spins, at least as a part of a more complicated covering
theory (maybe non-local), including other gauge fields and symmetries.

In this paper we consider a local quartic interaction of higher-spin gauge field with a scalar
field. In this special case, the nontrivial task of construction of interacting Lagrangian for the
higher spin field in physical gauge was solved using the full power of Noether’s procedure. There
are two interesting points worth highlighting first of which is that it is required to add additional
cubic interaction of scalar with other spin gauge fields and corresponding HS gauge symmetries to
successfully close the Neother’s procedure. The second one is that during the construction of quartic
vertex we were able to investigate the closure of commutators of two linear in gauge field gauge
transformation of our HS field 𝛿

(𝜖 )
1 and were able to understand whether it leads to non-locality or

not.
As a result, the linear on-field gauge transformation is obtained and the corresponding

commutator of transformation is analyzed.

[𝛿 (𝜂)1 𝛿
(𝜖 )
1 ] ∼ 𝛿

( [𝜂,𝜖 ])
1 + additional terms

The right-hand side of this commutator is classified in respect to gauge transformations coming
from cubic interactions with different higher spin symmetric tensor fields and with mixed symmetry
tensor field transformations aimed to understand the closure of this algebra.

During research process, we have intensively used Wolfram Mathematica along with "xAct",
"xTensor", "xTras" packages to model complex problems and solve them programmatically. We
have developed methods and tools for working with higher spin fields in Mathematica, and these
methods are generic enough to be used on other use-cases. We introduced some of the modeling
approaches in Wolfram Mathematica language and included the developed methods and functions as
codding snippets in the paper. These Notes are based on the long calculations which we performed
using the technique and notation developed in the past in [19]-[26].
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2. Commutator of 𝛿1 transformations for spin four

When applying Neother’s procedure we came up with the following linear in gauge field
transformations. The details can be found in [26]:

𝛿
(𝜀)
1 ℎ𝜇𝜈𝜆𝜌 = 𝜀𝛼𝛽𝛾𝜕𝛼𝜕𝛽𝜕𝛾ℎ𝜇𝜈𝜆𝜌 + 𝜕(𝜇𝜀

𝛼𝛽𝛾𝜕|𝛼𝜕𝛽ℎ𝛾 |𝜈𝜆𝜌) + 𝜕(𝜇𝜕𝜈𝜀
𝛼𝛽𝛾𝜕|𝛼ℎ𝛽𝛾 |𝜆𝜌)

+𝜕(𝜇𝜕𝜈𝜕𝜆𝜀𝛼𝛽𝛾ℎ𝜌)𝛼𝛽𝛾 . (1)

𝛿1Φ = 𝜀𝛼𝛽𝛾𝜕𝛼𝜕𝛽𝜕𝛾Φ, (2)
𝛿0ℎ

𝜇𝜈𝜆𝜌 = 𝜕 (𝜇𝜀𝜈𝜆𝜌) , (3)

The structure of this expression is similar to linear transformation obtained in [21] where nonlinear
curvature for general higher spin and in particular for spin three case is considered. First of all
for understanding of corresponding gauge algebra we can derive commutator of this linear 𝛿1

transformation (1) with zero order gauge transformation 𝛿0 (3). Straightforward calculations leads
to the following expression:[

𝛿
(𝜔)
0 𝛿

(𝜀)
1 − 𝛿

(𝜀)
0 𝛿

(𝜔)
1

]
ℎ𝜇𝜈𝜆𝜌 = 𝜕(𝜇

[
𝜀𝛼𝛽𝛾𝜕|𝛼𝜕𝛽𝜕𝛾 |𝜔𝜈𝜆𝜌) + 𝑡𝜈𝜆𝜌) (𝜀, 𝜔) − (𝜀 ↔ 𝜔)

]
, (4)

𝑡𝜈𝜆𝜌 (𝜀, 𝜔) = 𝜕(𝜈𝜀
𝛼𝛽𝛾𝜕|𝛼𝜕𝛽 |𝜔𝜆𝜌)𝛾 + 𝜕(𝜈𝜕𝜆𝜀

𝛼𝛽𝛾𝜕|𝛼 |𝜔𝜌)𝛽𝛾 +
1
3
𝜕(𝜈𝜕𝜆𝜀

𝛼𝛽𝛾𝜕𝜌)𝜔𝛼𝛽𝛾 . (5)

Here we should make two important comments:
First, we see that in (1) the form of the last three terms is ambiguously defined due to the freedom

in the definition of the 𝛿1. This transformation can be modified by adding zero-order (full gradient)
transformation with field-dependent parameter. Ruffly speaking we can add 𝛿0 transformation with
linear on gauge field parameter to (1) modifying the last three terms and getting corresponding
modification for tensor 𝑡𝜈𝜆𝜌 (𝜀, 𝜔) in definition of the commutator (4).

Second following the ideas of [21] and extracting the same type 𝛿0 terms described above we
can rewrite (1) in the following form:

𝛿
(𝜀)
1 ℎ𝜇𝜈𝜆𝜌 = 𝜀𝛼𝛽𝛾Γ

(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ) + 𝜕(𝜇Λ𝜈𝜆𝜌) (𝜀, ℎ), (6)

Λ𝜈𝜆𝜌 (𝜀, ℎ) = 𝜀𝛼𝛽𝛾𝜕𝛼𝜕𝛽ℎ𝛾𝜈𝜆𝜌 +
1
2
[
𝜕(𝜈𝜀

𝛼𝛽𝛾𝜕|𝛼ℎ𝛽𝛾 |𝜆𝜌) − 𝜀𝛼𝛽𝛾𝜕(𝜈𝜕|𝛼ℎ𝛽𝛾 |𝜆𝜌)
]

+ 1
3

[
𝜕(𝜈𝜕𝜆𝜀

𝛼𝛽𝛾ℎ𝜌)𝛼𝛽𝛾 + 𝜀𝛼𝛽𝛾𝜕(𝜈𝜕𝜆ℎ𝜌)𝛼𝛽𝛾 −
1
2
𝜕(𝜈𝜀

𝛼𝛽𝛾𝜕𝜆ℎ𝜌)𝛼𝛽𝛾

]
, (7)

where

Γ
(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ) = 𝜕𝛼𝜕𝛽𝜕𝛾ℎ𝜇𝜈𝜆𝜌 −

1
3
𝜕<𝛼𝜕𝛽𝜕(𝜇ℎ𝜈𝜆𝜌)𝛾> + 1

3
𝜕<𝛼𝜕(𝜇𝜕𝜈ℎ𝜆𝜌)𝛽𝛾>

− 𝜕(𝜇𝜕𝜈𝜕𝜆ℎ𝜌)𝛼𝛽𝛾 , (8)

is the third for spin four gauge field (last before Curvature) Christoffel Symbol in deWit-Freedman
hierarchy of connections defined in [24] The key point of the splitting (6) is the simple form of zero
order on field gauge transformation of connection (8):

𝛿
(𝜀)
0 Γ

(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ) = −4𝜕𝜇𝜕𝜈𝜕𝜆𝜕𝜌𝜀𝛼𝛽𝛾 , (9)
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and possibility in the future calculations to identify in r.h.s of commutator different symmetries by
existence of the terms in the form of Christoffel symbols or Generalized Curvatures (in some case
with symmetrized derivatives) contracted with composite parameters like in (6) but with different
rank and symmetry structure of the indices for composite parameters. So from now on we call such
a type of terms as a "regular" . In this way we see that expressions (1)-(9) is really looks like higher
spin generalization of the gauge transformation (Lie derivative) and usual Christoffel symbol for
linearized gravity1

𝛿
(𝜀)
1 ℎ𝜇𝜈 = L𝜀𝜆ℎ𝜇𝜈 = 𝜀𝛼Γ

(1)
𝛼;𝜇𝜈 + 𝜕(𝜇

(
𝜀𝛼ℎ𝜈)𝛼

)
, (10)

Γ
(1)
𝛼;𝜇𝜈 = 𝜕𝛼ℎ𝜇𝜈 − 𝜕(𝜇ℎ𝜈)𝛼, (11)

𝛿
(𝜀)
0 Γ

(1)
𝛼;𝜇𝜈 (ℎ) = −2𝜕𝜇𝜕𝜈𝜀𝛼. (12)

Using representation (6) and transformation rule (9) we can derive the following expression for
commutator:

[𝛿 (𝜔)
1 , 𝛿

(𝜀)
1 ]ℎ𝜇𝜈𝜆𝜌 = 𝜀𝛼𝛽𝛾Γ

(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (𝛿

(𝜔)
1 ℎ) − 4𝜀𝛼𝛽𝛾𝜕𝜇𝜕𝜈𝜕𝜆𝜕𝜌Λ𝛼𝛽𝛾 (𝜔, ℎ)

+ 𝜕(𝜇Λ𝜈𝜆𝜌) (𝜀, 𝛿 (𝜔)
1 ℎ) − (𝜀 ↔ 𝜔). (13)

Then taking int account that all symmetrized full gradients in r.h.s we can drop as a trivial 𝛿0

contribution from composite symmetric third rank gauge parameter linear in gauge field, we can
first of all drop second line in (13). Then we can put four 𝜇, 𝜈, 𝜆, 𝜌, derivatives in second term of
first line from Λ𝛼𝛽𝛾 to parameter 𝜀𝛼𝛽𝛾 and integrate using formula (9) and came to the following
expression

[𝛿 (𝜔)
1 , 𝛿

(𝜀)
1 ]ℎ𝜇𝜈𝜆𝜌 ∼ 𝜀𝛼𝛽𝛾Γ

(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (𝛿

(𝜔)
1 ℎ) + Γ

(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ)𝛿

(𝜔)
0 Λ𝛼𝛽𝛾 (𝜀, ℎ) − (𝜀 ↔ 𝜔), (14)

where ∼ means an equality up to any 𝛿0 variations with composed field dependent parameter
described above or delta zero variation with usual parameter 𝜀 or 𝜔 from any second order on gauge
field tensor. At this point it is worth to note that considering perturbative on linearized gauge field
deformation of the initial gauge transformation regulated by Noether’s procedure

𝛿 (𝜖 )ℎ𝜇𝜈𝜆𝜌 = (𝛿 (𝜖 )0 + 𝛿
(𝜖 )
1 + 𝛿

(𝜖 )
2 + . . . )ℎ𝜇𝜈𝜆𝜌, (15)

for commutator on the linear level on gauge field we obtain:{
[𝛿 (𝜔) , 𝛿 (𝜖 ) ]ℎ𝜇𝜈𝜆𝜌

}
1
= ( [𝛿 (𝜔)

1 , 𝛿
(𝜖 )
1 ] + 𝛿

(𝜔)
0 𝛿

(𝜀)
2 − 𝛿

(𝜀)
0 𝛿

(𝜔)
2 )ℎ𝜇𝜈𝜆𝜌. (16)

So we see that we can factorize in right hand side of our commutator of the first order gauge
transformation two type of trivial terms:

• Symmetrized full derivatives from composed gauge parameter linear in gauge fields 𝜕(𝜇Λ̃𝜈𝜆𝜌) (𝜀, 𝜔, ℎ)−
(𝜀 ↔ 𝜔).

1Note that most common definition of Christoffel symbol Γ𝛽
𝜇𝜈 (𝑔) = 1

2𝑔
𝛽𝛼 (𝜕(𝜇𝑔𝜈)𝛼 − 𝜕𝛼𝑔𝜇𝜈) for general metric

𝑔𝜇𝜈 relates with our definition after linearization in the flat background in the following way Γ
𝛽
𝜇𝜈 (𝜂𝜇𝜈 + ℎ𝜇𝜈) =

− 1
2𝜂

𝛽𝛼Γ
(1)
𝛼;𝜇𝜈 (ℎ).
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• The terms which can be classified as a second part of r.h.s of (16):
𝛿
(𝜔)
0 𝛿

(𝜀)
2 ℎ𝜇𝜈𝜆𝜌 − (𝜀 ↔ 𝜔), and we can throw them out also to understand algebra of two 𝛿1

transformations.

Now following this simple methodology we can present final result for commutator:

[𝛿 (𝜔)
1 , 𝛿

(𝜀)
1 ]ℎ𝜇𝜈𝜆𝜌 ∼

[
𝜀𝛿𝜎𝜂𝜕𝛿𝜕𝜎𝜕𝜂𝜔

𝛼𝛽𝛾 + 𝑇 𝛼𝛽𝛾 (𝜕, 𝜀, 𝜔)
]
Γ
(3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ)

+3𝜀𝛿𝜎𝜂𝜕𝛿𝜕𝜎𝜔
𝛼𝛽𝛾𝑅

(4)
𝜂𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ) +

9
20

𝜀
𝜎𝜂

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝜕(𝜎𝑅

(4)
𝜂𝛼𝛽𝛾);𝜇𝜈𝜆𝜌 (ℎ)

+[𝑅𝑒𝑚]𝜇𝜈𝜆𝜌 (𝜀, 𝜔, ℎ) − (𝜀 ↔ 𝜔) , (17)

where:

𝑇 𝛼𝛽𝛾 (𝜕, 𝜀, 𝜔) =
1
4
𝜕 (𝛼𝜕𝛽𝜀𝛿𝜎𝜂𝛿

(𝜔)
0 ℎ

𝛾)
𝛿𝜎𝜂

− 5
48

𝜕 (𝛼𝜀𝛿𝜎𝜂𝜕𝛽𝛿
(𝜔)
0 ℎ

𝛾)
𝛿𝜎𝜂

+ 7
16

𝜕 (𝛼𝜀𝛿𝜎𝜂𝜕𝛿𝛿
(𝜔)
0 ℎ

𝛽𝛾)
𝜎𝜂

− 1
16

𝜕 𝛿𝜀𝜎𝜂 (𝛼𝜕𝛽𝛿
(𝜔)
0 ℎ

𝛾)
𝛿𝜎𝜂

+ 1
16

𝜕 𝛿𝜀𝜎𝜂 (𝛼𝜕𝛿𝛿
(𝜔)
0 ℎ

𝛽𝛾)
𝜎𝜂 ,

(18)

and

[𝑅𝑒𝑚]𝜇𝜈𝜆𝜌 (𝜀, 𝜔, ℎ) =
9
20

𝜀
𝜂𝜎

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝜕(𝜇𝑅

(3)
𝜈𝜆𝜌);𝜂𝛽𝛾 (𝐻

(3)
[𝛼𝜎 ]) +

3
2
𝜕(𝜇𝜀

𝜂𝜎

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝑅 (3)

𝜈𝜆𝜌);𝜂𝛽𝛾 (𝐻
(3)
[𝛼𝜎 ]) (19)

− 9
40

𝜀
𝜂𝜎

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝜕(𝜇𝑅

(3)
𝜈𝜆𝜌);𝜂𝛼𝛾 (𝐻

(3)
[𝛽𝜎 ])

+ 3
8
𝜀
𝜂

𝜎𝛿
𝜕 [𝜎𝜕

[
𝛿
𝜔

𝛼

]
𝛽 ]𝛾

𝜕(𝜇Γ
(2)
𝛽𝛾;𝜈𝜆𝜌) (𝐻

(3)
[𝜂𝛼]) +

1
2
𝜕(𝜇𝜀

𝜂

𝛿𝜎
𝜕 [𝜎𝜕

[
𝛿
𝜔

𝛼

]
𝛽 ]𝛾

Γ
(2)
𝛽𝛾;𝜈𝜆𝜌) (𝐻

(3)
[𝜂𝛼])

+ 3
8
𝜀
𝜎𝜂

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝜕(𝜇𝜕𝜈Γ

(1)
𝛾;𝜆𝜌) (𝐻

(2)
[𝜂𝛼] [𝜎𝛽 ]) +

1
2
𝜕(𝜇𝜀

𝜎𝜂

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾𝜕𝜈Γ

(1)
𝛾;𝜆𝜌) (𝐻

(2)
[𝜂𝛼] [𝜎𝛽 ])

+ 3
4
𝜕(𝜇𝜕𝜈𝜀

𝜎𝜂

𝛿
𝜕 [𝛿𝜔𝛼]𝛽𝛾Γ (1)

𝛾;𝜆𝜌) (𝐻
(2)
[𝜂𝛼] [𝜎𝛽 ]) (20)

is remaining part of commutator contained transformation described by composed gauge parameter
with mixed symmetry of indices in the form of one or two antisymmetrized pairs.

To be more precise when classifying terms on the right side of (17) let us consider each line
separately:

1. The first line describes spin four gauge transformation with composite symmetric rank 3
tensor parameter in the form

[𝜔, 𝜀]𝛼𝛽𝛾Γ (3)
𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ), (21)

where

[𝜔, 𝜀]𝛼𝛽𝛾 = 𝜀𝛿𝜎𝜂𝜕𝛿𝜕𝜎𝜕𝜂𝜔
𝛼𝛽𝛾 + 𝑇 𝛼𝛽𝛾 (𝜕, 𝜀, 𝜔) − (𝜀 ↔ 𝜔). (22)

2. The second line also corresponds to the transformation of the spin four gauge field in respect
to gauge transformation with symmetric tensor parameter. But in this case we have symmetric

5
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tensor parameters of rank 4 and 5, which means that it is transformation coming from gauge
field with spin 5 and 6 and our spin four gauge field participates in these transformations
through the spin four gauge invariant (in zero order on field transformations) curvature. In
other words we have here regular terms in the form

Ω
𝜂𝛼𝛽𝛾𝛿

(4) (𝜀, 𝜔)𝑅 (4)
𝜂𝛼𝛽𝛾;𝜇𝜈𝜆𝜌 (ℎ), (23)

Ω
𝜎𝜂𝛼𝛽𝛾𝛿

(5) (𝜀, 𝜔)𝜕(𝜎𝑅 (4)
𝜂𝛼𝛽𝛾);𝜇𝜈𝜆𝜌 (ℎ), (24)

where

Ω
𝜂𝛼𝛽𝛾𝛿

(4) (𝜀, 𝜔) = 3
4
𝜀𝛿𝜎 (𝜂𝜕𝛿𝜕𝜎𝜔

𝛼𝛽𝛾) − (𝜀 ↔ 𝜔), (25)

Ω
𝜎𝜂𝛼𝛽𝛾𝛿

(5) (𝜀, 𝜔) = 9
200

𝜀𝛿 (𝜎𝜂𝜕𝛿𝜔
𝛼𝛽𝛾) − 3

200
𝜀
(𝜎𝜂

𝛿
𝜕𝛼𝜔𝛽𝛾) 𝛿 − (𝜀 ↔ 𝜔). (26)

3. Now we analyze the third line of (17) or eight terms in expression (20). First of all we
see that in this remaining part of commutator our spin four field expressed through the
reduced curvatures and Christoffel symbols. All such a objects possess one (first two lines
of (20)) ore two (remaining two lines of (20)) pair of antisymmetrized indices contracted
with composed gauge parameter. Therefore they could describe some mixed symmetry field
gauge transformation acting on spin four symmetric gauge field. For example first term in
(20) we can rewrite in the form:

Ω
[𝛼𝜎 ],𝜂𝛽𝛾
[2], (3) 𝜕(𝜇𝑅

(3)
𝜈𝜆𝜌);𝜂𝛽𝛾 (𝐻

(3)
[𝛼𝜎 ]) (27)

where

Ω
[𝛼𝜎 ],𝜂𝛽𝛾
[2], (3) =

3
40

(𝜀𝛿 (𝜂 [𝜎𝜕𝛿𝜔
𝛼]𝛽𝛾) − 𝜀

(𝜂 [𝜎
𝛿

𝜕𝛼]𝜔𝛽𝛾) 𝛿) (28)

and in the same way the sixth term with two pair of antisymmetrized indices we can express
as

Ω
[𝜂𝛼], [𝜎𝛽 ],𝛾
[2], [2], (1) 𝜕(𝜇𝜕𝜈Γ

(1)
𝛾;𝜆𝜌) (𝐻

(2)
[𝜂𝛼] [𝜎𝛽 ]) (29)

where composit parameter is

Ω
[𝜂𝛼], [𝜎𝛽 ],𝛾
[2], [2], (1) =

3
32

(𝜀𝛿

[
𝜎 [𝜂

𝜕𝛿𝜔
𝛼]𝛽

]
𝛾 − 𝜀

[
𝜎 [𝜂

𝛿
𝜕𝛼]𝜔𝛽

]
𝛿𝛾) (30)

This type of terms (first, third, fourth and sixth in (20)) with mixed symmetry composed
parameters we can still call "regular". But four remaining terms of (20) (second, fifth,
seventh and eighth) we cannot transform to regular form because they all have non contracted
derivatives from one (non composed) gauge parameter (𝜕𝜇𝜀 or 𝜕𝜇𝜕𝜈𝜀) and we call these terms
irregular because do not have at the moment interpretation of them in means of additional
symmetries or equation of motion of theory under construction. But at least we can clime
that all irregular terms are in the mixed symmetry parameter sector.

So we see that our commutator of spin four linear on gauge field transformations produce
regular terms coming from gauge transformation of symmetric tensors with spin 𝑠 < 6 and remaining
irregular transformation with mixed symmetry gauge field parameters.
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3. Explicitly computing commutator using Wolfram Mathematica

In this section we will introduce whole process of modelling Higher spin objects in Wolfram
Mathematica and will explicitly compute the commutator using Mathematica code. We will
introduce other objects as well such as generalized Christopher’s symbols and more. Here we
mainly used 𝑥𝑇𝑟𝑎𝑠 package form 𝑥𝐴𝑐𝑡 bundle.

Setup

We start our project by simply defining all the required object which will be used along the
way, such as manifold, tangent bundle, metric, higher spin fields and gauge parameters.

Figure 1

In the above code snipped we defined the manifold 𝑀 without curvature, also we have defined
gauge field 𝐻 as a symmetric tensor of rank four. We have also defined 𝜖, 𝜔 gauge parameters as
symmetric tensors of the third rank and some auxiliary symmetric tensors and vectors which will
be used along the way.

Next we define the generating function for the first order variation.

Figure 2

7



P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
4
3

Commutator of higher spin gauge transformation Melik Karapetyan

The beauty of this implementation is that it is a function of functions and due to encapsulation it
can be reused with different fields and parameters. It requires arguments such as 𝐻 and 𝜖 which
are arbitrary variable tensors of rank 4 and 3 respectively (in our case of course they are gauge field
and gauge parameter) and returns another function which can be treated as a tensor. On the last line
of above figure is the explicit form of first order variation same as (1).

As one can see, this form is explicit but is hard to read, this is because of the symmetrization
which is taken into place. To make it more readable and easy to work we will contract the indices
with 𝐴 vectors, as a result we will have more compact form.

Figure 3

Now we have the left hand side of the (6), we move forward into modelling the first element of
right hand side using the same approach.

Figure 4

The second term of the rhs is not important, and we will mainly focus on computing the
commutator using the first term.

To do so we need to compute the variation of 𝜖 ∗ Γ by the second gauge parameter 𝜔. It can
be done easily by plugging the 𝜖 ∗ Γ into the generating function of variation with respect to 𝜔

parameter.

8
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Figure 5

We almost have the commutator, the last thing is to compute the variations in a reverse order,
first by 𝜔 and then by 𝜖 and subtract from each other. To do so there is no need to compute the whole
variation from scratch, it is sufficient to implement a function which can swap gauge variables and
by using it we can compute the other term very quickly.

Figure 6

The 𝑐𝑜𝑚𝑚 term in the above figure is the commutator of gauge transformation. Now when we
have the commutator successfully modelled in Mathematica the second task will be to simplify it and
classify all terms. This will be done by modelling other objects such as Christofel symbols and more
using the same methodology, observing the expressions and guessing the ansatz then subtracting
the expression from the commutator and repeating the cycle until all terms are classified.
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