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Figure 1: The CKM matrix unitarity triangle in the ρ − η plane. The horizontal band is the constraint
imposed by our calculation of ε ′.

Lattice QCD is the only known systematically improvable (i.e. for which all systematic errors
can be identified and reduced/eliminated with sufficient computational effort) technique for treating
non-perturbative hadronic physics. In recent years lattice calculations have achieved a level of
control and precision sufficient to directly aid experimental efforts in the search for new physics
beyond the Standard Model (BSM). In the kaon sector particularly, lattice predictions for decay
processes that are suppressed in the Standard Model – those for which BSM contributions can be
relatively enhanced – have opened up a number of new avenues for searches on the Intensity Frontier
including:

• Searches for new sources of flavor-changing neutral currents in the rare kaon decays K → πνν̄

and K → πl l̄. [1–3]

• Constraints on lepton flavor universality through leptonic kaon decays (“Kl2”). [4]

• Precision determination of the CKM matrix element |Vus | through K → π semileptonic
decays (“Kl3”). [5]

• Calculations of direct CP violation in K → ππ decays.

A comprehensive review of many of these topics can be found in Ref. [6].
For this document we will focus upon the last item: the lattice calculation of direct CP-violation

(CPV) in neutral kaon decays. These decays are highly suppressed in the Standard Model, and
precise experimental results already exist, making this a highly attractive target for the search for new
sources of CPV. These searches are motivated by the observation that explaining the predominance
of matter over antimatter in the Universe via baryogenesis appears to require CPV in excess of
Standard Model predictions. In addition, measurements of CPV in kaon decays also provide a new,
horizontal band constraint on the CKM matrix unitarity triangle in the ρ − η plane, as illustrated in
Fig. 1 where we compare the constraint from our calculation versus those of other sources.

The first observations of direct CPV in kaon decays were performed in the late 1990s by the
NA48 [8] and KTeV [9] experiments. The phenomenon is parameterized by ε ′, the current world
average of which is [10]

(1)Re(ε ′/ε) = 16.6(2.3) × 10−4
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where ε is the measure of indirect CP-violation, itself heavily suppressed: |ε |= 2.228(11) × 10−3.
While the underlying weak interactions responsible for the decay occur at high energies, O(80 GeV),
the decay processes receive substantial corrections from low-energy hadronic physics that cannot
be treated reliably with perturbation theory, hence it is only recently that precise Standard Model
predictions have become feasible via lattice methods.

The RBC & UKQCD collaborations performed the first ab initio calculation of ε ′ in the
Standard Model [11] in 2015 using lattice QCD with three quark flavors (u, d and s) and exact
isospin symmetry (mu = md). In this context ε ′ appears as the difference between the complex
phases of the decay amplitudes of neutral kaons into two-pions in the isospin I = 0 (with amplitude
A0) and I = 2 (with amplitude A2) representations,

(2)ε ′ =
iωei(δ2−δ0)
√

2

(
ImA2
ReA2

−
ImA0
ReA0

)
,

where ω = ReA2/ReA0 and δI are the corresponding ππ scattering phase shifts. The following
result was obtained,

(3)Re(ε ′/ε) = 1.38(5.15)(4.59) × 10−4

where the errors are statistical and systematic respectively. The observation of a tension at the 2.1σ
level between the lattice and experimental results, and an unexplained tension of a similar size in the
I = 0 ππ scattering phase shifts which form a necessary component of calculation, provided strong
motivation for an improved calculation. A follow-up calculation of the I = 0 amplitude and ε ′ with
a factor of two smaller statistical error, dramatically improved understanding and confidence in the
systematic error resulting from the contribution of excited ππ states – resolving the phase-shift
discrepancy – as well as several other important systematic error sources, was published in 2020 [7]
and forms the basis of this document. Wewill also describe ongoing efforts to extend the calculation
over the coming years.

1. Summary of the calculations

The low energy decay amplitudes are precisely described by first order weak effective theory,

(4)AI = 〈(ππ)I |HW |K0〉 ,

where HW is the three-flavor effective Hamiltonian,

(5)HW =
GF
√

2
V∗udVus

10∑
i=0

[zi(µ) + τyi(µ)]Qi(µ) ,

which comprises ten effective four-quark operators Qi, with Wilson coefficients zi and yi that
encapsulate the high-energy contributions and are computed using perturbation theory. Here
τ = − V ∗t sVt d

V ∗usVud
contains the only imaginary contribution, which gives rise to the CP violation. While

the Hamiltonian is renormalization scheme independent, the component four-quark operators and
Wilson coefficients must be separately renormalized into a common scheme at a scale indicated by µ
in the above. Conventionally the MS scheme is used for the computation of the Wilson coefficients.
Unfortunately this scheme is not amenable to a lattice treatment as it involves fractional dimensions,
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therefore an intermediate non-perturbative renormalization (NPR) scheme – one of the so-called
RI-SMOM schemes – is utilized. A renormalization scale is chosen that is low enough to avoid
discretization effects but high enough that the conversion factors relating the renormalized lattice
amplitudes to the MS scheme can be computed reliably using perturbation theory. The existence
of this window requires a compromise that can result in significant systematic errors arising from
the truncation of the perturbative series in the matching calculation.

On the lattice the K → ππ matrix elements are obtained by fitting to three-point functions of
the form

(6)Ci(t, tK→snk
sep ) = 〈0|O†snk(tK→snk

sep )Qi(t)OK (0)|0〉

where OK is the kaon operator, Osnk creates the ππ state and Qi are the four-quark operators
discussed above. In the limit of large (Euclidean) times t and t ′ = tsep− t these correlation functions
are described thus:

(7)Ci(t, tK→snk
sep )

t,t′ →∞
−−−−−→

1
√

2
AK Aππe−mK te−Eππ t

′

Mi

where Mi = 〈ππ |Qi |K〉, AK and Asnk describe the overlap between the kaon and ππ states with
their corresponding operators, mK is the kaon mass, and Eππ the ππ energy (which is equal to the
kaon mass for a physical decay). Note that the renormalization and finite volume correction of Mi

are required prior to their usage in Eqs. 4 and 5.
In practise the kaon and ππ operators project onto all states with the corresponding quantum

numbers and care must be taken to isolate the states of interest. The contribution of each state
falls exponentially in lattice time according to the energy of the state such that at large times the
signal is dominated by only the lightest states. Nevertheless, excited state contamination remains a
significant potential source of systematic error. A second challenge specific to this calculation is that
with the typical periodic spatial boundary conditions (BCs), the spectrum of states generated by the
ππ operator includes a state comprising two pions at rest. This has an energy ∼260 MeV, lower than
the kaonmass of∼500MeV, hence an unphysical, energy nonconserving decay dominates the signal
at large times. While multi-state fits to extract the subdominant physical contribution are possible,
it is often very difficult to reliably isolate the excited-state terms, particularly with noisy data. For
these calculations we instead exploit the ability to modify the lattice spatial BCs while incurring
only exponentially-suppressed finite-volume errors: For the I = 2 calculation an isospin rotation
relates the neutral kaon decay to K+ → π+π+. The spatial BCs of the down-quark alone are then
changed from periodic to antiperiodic, which results in the final state charged pions also becoming
antiperiodic, hence their lattice momenta become discretized in odd-integer multiples of π/L where
L is the lattice size. We can then tune L such that the lowest-energy state comprises two pions with
a total energy that matches the kaon mass. This operation breaks the isospin symmetry, but any
mixing of the final state is prevented by virtue of π+π+ being the only allowed doubly-charged state.
For the I = 0 calculation the isospin breaking in this approach cannot be avoided, therefore we
employ instead G-parity BCs, for which a charge-conjugation and isospin rotation are performed at
the lattice boundary. Both neutral and charged pions are negative under G-parity hence we achieve
the same effect of imposing antiperiodic BCs but for all pions and without breaking isospin, at the
cost of a significant increase in computational cost [12].
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1.1 2015 calculations

The A2 (∆I = 3/2) amplitude is composed of three linear combinations of the operators Qi

that are labeled by their representation under chiral SU(3)L ×SU(3)R. The dominant contributor to
the real part is the (27, 1) combination and the imaginary part is dominated by the remaining (8, 8)
combinations. The latest calculation [13] was performed in 2015 using physical quark masses, a
large physical volume and hence good control over finite-volume errors, and two lattice spacings
allowing a continuum limit to be taken. We obtained,

(8a)ReA2 = 1.50(4)(14) × 10−8 GeV
(8b)ImA2 = −6.99(20)(84) × 10−14 GeV

where the errors are statistical and systematic, respectively. A significant achievement of this
calculation is obtaining a result with < 1% statistical errors despite having performed a continuum
extrapolation. The systematic error is dominated entirely by perturbative truncation errors in the
matching of our NPR scheme to MS (8%) and in the Wilson coefficients (12%). The result for
ReA2 is in good agreement with the experimental values of ReA2 = 1.4787(31) × 10−8 GeV from
charged kaon decays and 1.570(53) × 10−8 GeV from neutral kaon decays.

The A0 (∆I = 1/2) amplitude requires all ten effective four-quark operators; the operator Q2
provides the dominant contribution to the real part and Q6, and to a lesser extent Q4, dominate the
imaginary part. This is a considerably more computationally expensive calculation than A2, not
just due to the added cost of G-parity boundary conditions but also because the vacuum quantum
numbers of the final state result in the presence of disconnected diagrams that are inherently noisy,
requiring larger statistics and more sophisticated methods to adequately resolve. As a result, for the
first calculation of A0, also performed in 2015 [11], we used only a single lattice with a relatively
coarse lattice spacing, allowing us to have good control over finite-volume errors at the cost of
larger discretization errors. A single ππ operator, labeled ππ(111), was chosen in which the two
pions are generated moving back-to-back with momentum (±1,±1,±1)π/L. We obtained

(9a)ReA0 = 4.66(1.00)(1.26) × 10−7 GeV
(9b)ImA0 = −1.90(1.23)(1.08) × 10−11 GeV .

The larger relative statistical error on the imaginary part arises primarily from a strong cancelation
between the dominant Q4 and Q6 contributions. While this calculation had substantial, O(12%)
discretization errors due to the coarse lattice spacing, the systematic error is again dominated
by perturbative truncation errors. The real part is in agreement with the experimental value
ReA0 = 3.3201(18) × 10−7 GeV.

Combining the above results for A0 and A2 using Eq. (2), we found

(10)Re(ε ′/ε) = 1.38(5.15)(4.59) × 10−4 ,

which is 2.1σ below the experimental value. While the errors on the calculation are large, roughly
3× those of the experiment, this result clearly demonstrates that ε ′ is now accessible to lattice
calculation.
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Figure 2: (Left) The ππ effective energy obtained using 1438 configurations with the ππ(111) operator.
(Right) The fitted I = 0 ππ energy obtained using multiple operators and 741 configurations, varying the
lower bound on the fit range tmin, the number of operators and number of states. In the legend Oa, Ob , Oc
correspond to the ππ(111), ππ(311) and σ operators, respectively. Our best fit is the 3-operator, 2-state result
with tmin = 6.

1.2 Updated calculation of A0 [7]

As previously mentioned, the tension between the calculation of ε ′ and experiment was ac-
companied by a similar tension in the I = 0 ππ scattering phase shift; we obtained δ0(Eππ ≈
mK ) = 23.8(4.9)(1.2)◦, roughly 3σ smaller than the prediction of ∼39◦ obtained by combining the
dispersive Roy equations with experimental input [14]. Both the phase-shift and the associated ππ
energy are key ingredients of the calculation, therefore it is crucial that a reliable result is obtained.
Following the 2015 publication we sought to address this issue by increasing the statistics by almost
7×, but found that the disagreement (in units of the error) became worse in doing so, producing a
value of 19.1(2.5)◦ [15]. The corresponding effectivemass plot, the plateau value of which indicates
the ground-state energy, is reproduced in Fig. 2. We observe what appears to be a clear plateau, but
nevertheless the most likely explanation for the discrepancy is excited state contamination arising
from a second state with an energy close to that of the ground-state, whose contribution is masked
by the rapid growth of the error bars.

To address the potential excited-state contamination we performed measurements on 741
configurations (3.4× the number used for the original calculation) with two additional ππ oper-
ators: the ππ(311) operator in which the two pions again move back-to-back but with momenta
(±3,±1,±1)π/L and permutations thereof, and the scalar σ = (ūu + d̄d)/

√
2 operator. By varying

the source and sink operators we can construct a matrix of correlation functions whose time depen-
dence can be fit simultaneously to extract the energies and amplitudes of multiple ππ states with
considerably higher precision and control than relying on the large-time dependence of a single
operator. This is evidenced by Fig. 2 where we show the fitted ππ energy as we vary the fit range,
the number of operators and the number of fitted states; a clear advantage is observed both in the
statistical error and the quality of the plateau as additional operators are included. We obtained [15]

(11)δ0(471 MeV) = 32.3(1.0)(1.4)◦ ,

which is in much better agreement with the dispersive prediction at this energy of 35.9◦. We
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therefore conclude that excited state contamination was indeed responsible for the disagreement
and that it has now been resolved.
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Figure 3: The effective matrix elements of the Q2 and Q6 operators for the ππ(111), σ and optimal operators
as a function of the time separation t ′ between the four-quark operator and the ππ sink operator.

We also observed a considerable improvement in the K → ππ matrix elements: In Fig 3 we
plot the effective matrix elements defined as,

(12)Meff,snk
i (t ′) = Ci(t, tK→snk

sep )
(

1
√

2
AK A0

snke−mK te−E0t
′

)−1
= M0

i +
∑
j

Aj
snk

A0
snk

M j
i e−(Ej−E0)t′ .

where t ′ = tK→snk
sep − t and Ci are defined in Eq. 6. Here AK and mK are again the ground-state

kaon amplitude and mass, and Aj
snk and Ej are amplitudes and energies of the states created by

the ππ operator. Both the amplitudes and energies are obtained from their respective two-point
function fits. A uniform cut of tmin = 6 is applied to isolate the kaon ground state contribution. As
indicated, Meff,snk

i converge to the desired matrix elements M0
i at large t ′. In the figure we compare

the ππ(111) and σ effective matrix elements against the optimal combination of those two operators
that best projects onto the ground state. As with ππ fits, we observe that the additional operators
dramatically improve the statistical error and the length and quality of the plateau.

In Fig. 4 we plot the fit results for the Q2 and Q6 operators, which dominate the real and
imaginary parts of A0, respectively, as we vary the number of operators, states and the temporal
cuts. For Q2 we find good agreement between all of the fits for t ′min ≥ 4, although improved
statistical errors are obtained with the additional operators. However for Q6 we see a clear pattern
of excited state contamination in the one and two-operator fit results, the latter converging earlier
than the former as we would expect. For our final best fit we took the result with three operators
and two states with t ′min = 5 and tmin = 6. The measurement strategy used for the 2015 calculation
corresponds to the “1 × 1 tmin = 6” point with t ′min = 4 which is incompatible with our new result,
implying that the ≤ 5% excited state systematic error was significantly underestimated.

The updated calculation includes a further refinement in the use of “step-scaling” [16] for
the non-perturbative renormalization, which allows the limit on the largest renormalization scale
imposed by the lattice spacing to be circumvented by incorporating the non-perturbative running
computed on a finer lattice between a low scale accessible on the coarse lattice and a higher scale.
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Figure 4: The fitted ground-state matrix elements of the Q2 and Q6 operators for various choices of the
number of operators, number of states and the cut tmin between the kaon and four-quark operators, as a
function of the cut t ′min between the four-quark operator and the ππ sink. In the legend “a × b” indicates the
fit was performed with a operators and b states, and “opt.“ indicates the optimal operator was used. In the
two-operator case we drop the ππ(311) operator and in the one-operator case we further drop the σ. The
”sys.“ results are obtained using three operators and three states for both the ππ and K → ππ fits and is used
in the systematic error estimation. The values are shifted for clarity.

Using this technique we increased our renormalization scale from 1.53 GeV to 4 GeV, reducing
the estimated 15% truncation systematic error in the RI → MS matching by a factor of 3×.
Unfortunately a corresponding decrease in the systematic error arising from the use of perturbation
theory for the Wilson coefficients was not obtained despite their also being evaluated at this high
scale, primarily due to the underlying use of perturbation theory to match between the 4- and
3-flavor theories at the charm mass scale mc ≈ 1.3 GeV.

2. Results of the updated calculation

2.1 The ∆I = 1/2 rule
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Figure 5: The two dominant contributions C1 and C2 to ReA2 and their sum on the 48I (left) and 64I (right)
ensembles, reproduced from Fig. 11 of Ref. [13].
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Experimental results show that the ∆I = 1/2 decay is roughly ∼500 more common than the
∆I = 3/2 decay, which is reflected in the ratio

1
ω

=
ReA0
ReA2

= 22.45(6) , (13)

the inverse of which appears as a coefficient in the equation for ε ′, Eq. (2). The origin of this
∆I = 1/2 rule has been a longstanding mystery. A factor of two difference can be accounted for by
the perturbative running from the weak to the charm scales, but there has been no widely accepted
explanation as to the origin of the remaining factor of ten. Our lattice calculation provides an
answer: the two largest diagrams C1 and C2 contributing to the (27, 1) operator which dominates
ReA2 strongly cancel, as illustrated in Fig. 5. This behavior is counter to that predicted by naïve
color counting which suggests these terms should have the same sign and differ by a factor of three
in size. Combining our A0 and A2 calculations we find

1
ω

=
ReA0
ReA2

= 19.9(5.0) (14)

which is completely consistent with the experimental number, hence we conclude that the ∆I = 1/2
rule is a consequence of low-energy QCD.

2.2 A0 and ε ′

For the ∆I = 1/2 amplitude we obtain

(15a)ReA0 = 2.99(0.32)(0.59) × 10−7 GeV
(15b)ImA0 = −6.98(0.62)(1.44) × 10−11 GeV

The real part agrees well with the experimental result ReA0 = 3.3201(18) × 10−7 GeV and with
our previous result, however the value for the imaginary party differs substantially from our 2015
calculation, giving rise to a similarly large change in ε ′:

(16)Re(ε ′/ε) = 21.7(2.6)(6.2)(5.0) × 10−4 ,

where the first set of parentheses gives the statistical error. Here the systematic error has been
separated into two, with the third set of parentheses corresponding to an estimate (23%) of the
effects of isospin breaking (IB) and electromagnetism (EM) obtained through next-to-leading order
chiral perturbation theory with input from the 1/Nc expansion [17]. EM+IB effects typically enter
at the percent scale in hadronic quantities, but for K → ππ their relative effects are enhanced due
to the 20× suppression of A2 by the mechanics of the ∆I = 1/2 rule. We did not previously include
these effects in our error budget as the result was considered a pure-QCD calculation. The remaining
systematic error is given by the second set of parentheses and is dominated by the discretization
error (12%) and the perturbative truncation error in theWilson coefficients (12%). The excited state
systematic error is treated as negligible compared to the other sources of error given the control
over such effects provided by the multi-operator method demonstrated in the previous section.

This result for Re(ε ′/ε) is now in good agreement with the experimental number.

9



P
o
S
(
C
D
2
0
2
1
)
0
4
2

Review of Lattice QCD calculations of kaon decays Christopher Kelly

3. Conclusions and outlook

Recent advances in techniques and computational power have brought about a golden age
where lattice calculations of kaonic quantities can have a significant impact on the search for new
physics. This document detailed the RBC & UKQCD collaboration’s calculation of CP-violation
K → ππ decays, primarily focusing on a recent, updated calculation [7] of the ∆I = 1/2 amplitude
A0 following from our original 2015 calculation [11]. Among the notable changes are a 3.4×
increase in statistics; the addition of two more ππ operators to the data which vastly improves our
control over excited state effects, resolving a discrepancy previously observed between the lattice
and dispersive predictions of the I = 0 ππ scattering phase shift at the kaon mass scale as well
as improving the statistical error and the quality of the plateaus; and the use of step-scaling to
raise the renormalization scale from 1.53 GeV to 4 GeV resulting in a 3× improvement in the
formerly-dominant error resulting from the MS matching. By combining the results with our
earlier calculation of A2 we obtain an ab initio determination of ReA0/ReA2 that is consistent with
experiment and thus demonstrate that the ∆I = 1/2 rule mainly arises from non-perturbative QCD
effects. We also obtain a result for Re(ε ′/ε) that is now consistent with the experimental value and
has a total error that is ∼3.6× that of the experiment.

We believe that ε ′ remains a promising avenue in which to search for new physics, but
improvements in the systematic errors are required. The single largest source of error is from the
missing contributions of isospin breaking and electromagnetism. Unfortunately the lattice treatment
of electromagnetism is complicated by the long-range nature of the interactions and so theoretical
hurdlesmust be overcome before a first principles calculation is possible. We are presently exploring
a novel technique for treating the interactions using a truncated potential in Coulomb gauge where
the truncation range is set to confine the interaction within the finite box resulting in finite-volume
errors that can be treated analytically using infinite-volume perturbation theory [18].

A second significant source of error arises from the use of perturbation theory to match between
the four- and three-flavor effective theories in the Wilson coefficients. While a four-flavor lattice
calculation with physical charm quarks is possible, the requirement of large statistics, a fine lattice
spacing to control charm discretization effects and a large volume to control finite-volume effects
puts this outside of the reach of present and near-future supercomputers. In the interim we are
investigating the possibility of computing the 4→ 3f matching non-perturbatively [19, 20].

The dramatic improvement in control over excited state effects that we discussed in this docu-
ment has reopened the question as to whether we can perform multi-state fits to extract the physical
∆I = 1/2 matrix element from a calculation with periodic boundary conditions, forgoing the use
of the computationally-expensive G-parity boundary conditions to remove the dominant contribu-
tion of the unphysical decay of the kaon to a stationary ππ state. We are presently conducting a
preliminary calculation on two different coarse lattices to evaluate this approach [21].

Finally, the largest pure-lattice systematic error is due to the fact that A0 has only been computed
at a single, somewhat coarse lattice spacing. We are presently generating two additional ensembles
with G-parity boundary conditions which will allow for the controlled continuum extrapolation of
our result for A0 [22], largely eliminating this source of error.
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