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We present a data-driven analysis of the S-wave 𝜋𝜋 → 𝜋𝜋 (𝐼 = 0, 2) and 𝜋𝐾 → 𝜋𝐾 (𝐼 = 1/2, 3/2)
reactions using the partial-wave dispersion relation. The contributions from the left-hand cuts are
parametrized using the expansion in a suitably constructed conformal variable, which accounts
for its analytical structure. The partial-wave dispersion relation is solved numerically using the
𝑁/𝐷 method. The fits to the experimental data supplemented with the constraints from chiral
perturbation theory at threshold and Adler zero give the results consistent with Roy-like (Roy-
Steiner) analyses. For the 𝜋𝜋 scattering we present the coupled-channel analysis by including
additionally the 𝐾𝐾̄ channel. By the analytic continuation to the complex plane, we found poles
associated with the lightest scalar resonances 𝜎/ 𝑓0 (500), 𝑓0 (980), and 𝜅/𝐾∗

0 (700). For all the
channels we also performed the fits directly to the Roy-like (Roy-Steiner) solutions in the physical
region, in order to minimize the 𝑁/𝐷 uncertainties in the complex plane and to extract the most
constrained Omnès functions.
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1. Introduction

The renewed interest in the hadron spectroscopy has been motivated by recent experimental
discoveries of unexpected exotic hadron resonances and the success of lattice QCD, which recently
calculated the lowest hadron excitation spectrum with the masses of the light quarks near their
physical values.

To correctly identify resonance parameters, one must search for poles in the complex plane.
In order to determine the pole position of the resonance, one has to analytically continue the
amplitude to the unphysical Riemann sheets. The proper theoretical framework should satisfy the
main principles of the S-matrix theory, namely unitarity, analyticity, and crossing symmetry. These
constraints were successfully incorporated in the set of Roy or Roy-Steiner equations. However,
the rigorous implementation of these equations requires experimental knowledge of all partial
waves with different isospin in the direct and crossing channels (including high energy region).
Furthermore, applying Roy-like equations for coupled-channel cases is quite complicated and has
not been achieved in the literature so far. Because of the difficulties mentioned above, in the
experimental and lattice analyses, it is a common practice to rely on simple parameterizations,
like superposition of Breit-Wigner resonances or the K-matrix approach. Both methods ignore the
existence of the left-hand cut and often lead to spurious poles in the complex plane.

A good alternative to the K-matrix approach and a complementary method to Roy analysis
is the so-called 𝑁/𝐷 technique [1], which provides the solution to the dispersion relation for the
partial-wave amplitudes. In this method, unitarity and analyticity constraints are implemented
exactly. The required input to solve the partial wave dispersion equation is the discontinuity along
the left-hand cut, which is typically approximated one way or another using chiral perturbation
theory (𝜒PT). In [2] we extended the ideas of [3–6], where the left-hand cut contributions were
approximated using an expansion in powers of a suitably chosen conformal variable. However, in
contrast to [7, 8], we followed a data-driven approach and adjusted the unknown coefficients in
the expansion scheme to empirical data (or Roy-like results) directly [2] and used 𝜒PT only for
threshold constraints, which can be turned off. In this way, the model dependence is avoided, and
the method can also be applied to the reactions which do not include Goldstone bosons (for a recent
application to 𝛾𝛾 → 𝐷𝐷̄ scattering, see [9]).

2. Formalism

We consider the 2 → 2 scattering process, which can be described by the 𝑠-channel partial-
wave amplitudes 𝑡 (𝐽)

𝑎𝑏
(𝑠), where 𝑎𝑏 are the coupled-channel indices with 𝑎 and 𝑏 standing for the

initial and final state, respectively. For the following discussion, we focus only on the S-wave
(𝐽 = 0) and therefore will suppress the label (𝐽). Within the maximal analyticity assumption, the
partial-wave amplitudes satisfy the dispersive representation

𝑡𝑎𝑏 (𝑠) =
∫ 𝑠𝐿

−∞

𝑑𝑠′

𝜋

Disc 𝑡𝑎𝑏 (𝑠′)
𝑠′ − 𝑠 +

∫ ∞

𝑠th

𝑑𝑠′

𝜋

Disc 𝑡𝑎𝑏 (𝑠′)
𝑠′ − 𝑠 , (1)

where 𝑠th being the lowest threshold of the corresponding two-meson system, 𝑠𝐿 is the position of
the closest left-hand cut singularity and the discontinuity along the right-hand cut is given by the
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unitarity relation

Disc 𝑡𝑎𝑏 (𝑠) =
∑︁
𝑐

𝑡𝑎𝑐 (𝑠) 𝜌𝑐 (𝑠) 𝑡∗𝑐𝑑 (𝑠) , (2)

where 𝜌𝑐 (𝑠) is the phase space factor. The unitarity condition guarantees that the partial-wave
amplitudes at infinity approach at most constants. In accordance with that, we can make one
subtraction in Eq. (1) to suppress the high-energy contribution under the dispersive integrals. Thus
we rewrite Eq. (1) as

𝑡𝑎𝑏 (𝑠) = 𝑡𝑎𝑏 (0) +
𝑠

𝜋

∫ 𝑠𝐿

−∞

𝑑𝑠′

𝑠′
Disc 𝑡𝑎𝑏 (𝑠′)

𝑠′ − 𝑠 + 𝑠

𝜋

∫ ∞

𝑠th

𝑑𝑠′

𝑠′
Disc 𝑡𝑎𝑏 (𝑠′)

𝑠′ − 𝑠

≡ 𝑈𝑎𝑏 (𝑠) +
𝑠

𝜋

∫ ∞

𝑠th

𝑑𝑠′

𝑠′
Disc 𝑡𝑎𝑏 (𝑠′)

𝑠′ − 𝑠 , (3)

where we combined the subtraction constant together with the left-hand cut contributions into the
function𝑈𝑎𝑏 (𝑠). The solution to (3) can be written using the 𝑁/𝐷 ansatz [1]

𝑡𝑎𝑏 (𝑠) =
∑︁
𝑐

𝐷−1
𝑎𝑐 (𝑠) 𝑁𝑐𝑏 (𝑠) , (4)

where the contributions of left- and right-hand cuts are separated into 𝑁𝑎𝑏 (𝑠) and 𝐷𝑎𝑏 (𝑠) functions,
respectively. As a consequence of this ansatz, one needs to solve a system of linear integral equations
[10, 11]

𝑁𝑎𝑏 (𝑠) = 𝑈𝑎𝑏 (𝑠) +
𝑠

𝜋

∑︁
𝑐

∫ ∞

𝑠th

𝑑𝑠′

𝑠′
𝑁𝑎𝑐 (𝑠′) 𝜌𝑐 (𝑠′) (𝑈𝑐𝑏 (𝑠′) −𝑈𝑐𝑏 (𝑠))

𝑠′ − 𝑠 (5)

𝐷𝑎𝑏 (𝑠) = 𝛿𝑎𝑏 −
𝑠

𝜋

∫ ∞

𝑠th

𝑑𝑠′

𝑠′
𝑁𝑎𝑏 (𝑠′) 𝜌𝑏 (𝑠′)

𝑠′ − 𝑠 . (6)

with the input of 𝑈𝑎𝑏 (𝑠) for 𝑠 > 𝑠th. Since in a general scattering problem, little is known about
the left-hand cuts, except their analytic structure in the complex plane, one can consider an analytic
continuation of 𝑈𝑎𝑏 (𝑠) to the physical region by means of an expansion in a suitably contracted
conformal mapping variable 𝜉𝑎𝑏 (𝑠) [3–6],

𝑈𝑎𝑏 (𝑠) =
∞∑︁
𝑛=0

𝐶𝑎𝑏,𝑛 (𝜉𝑎𝑏 (𝑠))𝑛 , (7)

which is chosen such that it maps the left-hand cut plane onto the unit circle [12]. The form of
𝜉𝑎𝑏 (𝑠) depends on the cut structure of the reaction (i.e. {𝑎𝑏}) and specified by the position of the
closest left-hand cut branching point and an expansion point around which the series is expanded
(see Ref. [2] for more details). We determine the unknown 𝐶𝑎𝑏,𝑛 in Eq. (7) and the optimal
positions of expansion point directly from the fit to the data and use 𝜒PT results only as constraints
for the scattering lengths (𝑎), slope parameters (𝑏), and Adler zero values (𝑠𝐴). In the case of no
bound states or CDD poles [13, 14], the Omnès function can be easily obtained as

Ω𝑎𝑏 (𝑠) = 𝐷−1
𝑎𝑏 (𝑠) . (8)
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3. Numerical results

Both 𝜋𝜋 and 𝜋𝐾 channels have been measured experimentally (see Refs. [15, 16] for the
overview). However, throughout the whole energy range there are large differences between
different data-sets and a careful choice of the data is required to achieve a controllable data-driven
description of the phase shifts and inelasticity. In order to be consistent with 𝜒PT in the threshold
region, we employ the effective range expansion. For the 𝜋𝜋 and 𝜋𝐾 scattering both 𝑎 and 𝑏 have
been calculated at NNLO in 𝜒PT [17, 18]. Since for 𝜋𝐾 scattering the calculation of uncertainties
is a bit cumbersome at NNLO and have not been provided in [18], in our fits we take NNLO
𝜒PT values as central results, but include a conservative error-bar, such that it covers the recent
Roy-Steiner results [15]. As for the Adler zero, in all numerical fits, we take the NLO result [19–21]
as a central value, with the uncertainties from the omitted higher orders as |NLO − LO|, which
should provide a very conservative estimate. The NLO values for the low-energy constants are
taken from [22]. The expansion point, around which the conformal series is expanded, is chosen in
the middle between the threshold and the energy of the last data point that is fitted. To assess the
systematic uncertainties, we vary this parameter (see Ref. [2] for more details). The uncertainties
are propagated using a bootstrap approach. In several cases, however, we will be fitting Roy (Roy-
Steiner) solutions, which are smooth functions and their errors are fully correlated from one point
to another. In these cases, 𝜒2/𝑑.𝑜. 𝑓 loses its statistical meaning and can be < 1.

All results presented below have been checked to fulfill the partial-wave dispersion relation
given in Eq. (3).

3.1 Analysis of the 𝜋𝜋 data for 𝐼 = 0, 2

For the isoscalar 𝜋𝜋 scattering, already the single channel analysis provides a realistic estimate
of the resonance position of 𝜎/ 𝑓0(500), which is known to be connected almost exclusively to the
pion sector. However, a comprehensive study of the region up to

√
𝑠 = 1.2 GeV should account

for the interplay between 𝜋𝜋 and 𝐾𝐾̄ channels. In the physical region the two-channel 𝑡-matrix
is fully described by experimental information on the 𝜋𝜋 phase shift 𝛿𝜋𝜋 (𝑠), the inelasticity 𝜂(𝑠)
(or |𝑡𝜋𝜋,𝐾𝐾̄ (𝑠) | for 𝑠 > 4𝑚2

𝐾
) and the 𝜋𝜋 → 𝐾𝐾̄ phase 𝛿𝜋𝜋,𝐾𝐾̄ (𝑠). We first fit the available

experimental data supplemented with constraints for scattering length, slope parameter and Adler
zero from 𝜒PT in the 𝜋𝜋 → 𝜋𝜋 channel. As for the 𝜋𝜋 → 𝐾𝐾̄ channel, the complication stems
from two facts. Firstly, the experimental data exist only in the physical region above 𝐾𝐾̄ threshold.
Therefore, in order to stabilize the fits, we make sure that the obtained |𝑡𝜋𝜋,𝐾𝐾̄ (𝑠) | stays small around
𝑠 = 0 as a manifestation of 𝜒PT. Secondly, the existing experimental data for both |𝑡𝜋𝜋,𝐾𝐾̄ (𝑠) | and
𝛿𝜋𝜋,𝐾𝐾̄ (𝑠) contains incompatible data sets and require to make some choices [2]. The best fit leads
to √

𝑠𝜎 = 454(12)+6
−7 − 262(12)+8

−12 𝑖 MeV and √
𝑠 𝑓0 = 990(7)+2

−4 − 17(7)+4
−1 𝑖 MeV. On the other side,

we have at our disposal very precise 𝜋𝜋 → 𝜋𝜋 Roy-like analyses from [16, 24, 25] and 𝜋𝜋 → 𝐾𝐾̄

Roy-Steiner analyses from [15, 26–29]. Unfortunately, they do not come from the coupled-channel
Roy-Steiner analyses and may display some inconsistencies between each other in the two channel
approximation. In order to avoid possible conflict, we impose the 𝜋𝜋 → 𝐾𝐾̄ Roy-Steiner solution
only as constraint on |𝑡𝜋𝜋,𝐾𝐾̄ (𝑠) | in the unphysical region 4𝑚2

𝜋 < 𝑠 < 4𝑚2
𝐾

. As for the 𝛿𝜋𝜋,𝐾𝐾̄ (𝑠),
we take advantage of experimental data of Cohen et al. [30] in the fit, which are quite precise. The
good description of the data is shown in Fig. 1 (top left panel). The resulting pole positions come
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Figure 1: Results for the 𝜋𝜋 → 𝜋𝜋 and 𝜋𝐾 → 𝜋𝐾 scattering. Top row corresponds to the 𝜋𝜋 → 𝜋𝜋

scattering with 𝐼 = 0 coupled-channel case (left panel) and 𝐼 = 2 single-channel case (right panel). Bottom
row shows the results for single-channel study of the 𝜋𝐾 → 𝜋𝐾 scattering with 𝐼 = 1/2 (left panel) and
𝐼 = 3/2 (right panel). In the phase shift plots two curves are shown: fit to the experimental data (dashed
curve) and fit to the pseudo data from Roy-like analyses [16, 23–25] (thick curve).

relatively close to the current Roy-like analyses average results:√︃
𝑠
𝑁/𝐷
𝜎 = 458(10)+7

−15 − 𝑖 256(9)+5
−8 MeV [2] ,

√︃
𝑠

Roy
𝜎 = 449+22

−16 − 𝑖 275(15) MeV [23, 31] ,√︃
𝑠
𝑁/𝐷
𝑓0

= 993(2)+2
−1 − 𝑖 21(3)+2

−4 MeV [2] ,
√︃
𝑠

Roy
𝑓0

= 996+7
−14 − 𝑖 25+11

−6 MeV [16, 24, 25, 32] .

We now turn to the partial wave dispersion relation analysis of the non-resonant 𝜋𝜋 (𝐼 = 2)
scattering, which was not given in [2]. While the overall strategy remains the same as for the 𝐼 = 0
case, we notice that by fitting either experimental data or the Roy analysis results, supplemented
with 𝜒PT constraints, we obtain an unphysical zero of 𝐷 (𝑠) far away from the threshold on the first
Riemann sheet. To avoid this artificial bound state, we impose in the fit the exact fulfilment of p.w.
dispersion relation given by Eq. (3). This leads to the four-parameter fit with a good description of
both the experimental data and the Roy-like analysis results. The phase shift obtained from this fit
is shown in Fig. 1 (top right panel). The values of the fitted parameters, threshold parameters and
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Figure 2: Omnés function for 𝜋𝜋 → 𝜋𝜋 (𝐼 = 2) (left panel) and 𝜋𝐾 → 𝜋𝐾 (𝐼 = 3/2) (right panel) processes.

Adler zeros are collected in Tables 1 and 2. The Omnès function is shown in Fig. 2.

3.2 Analysis of the 𝜋𝐾 data for 𝐼 = 1/2, 3/2

The available experimental data for these processes is scarce in the region close to the 𝜋𝐾
threshold, and contain inconsistencies even within one dataset [33, 34]. Therefore the fits are
strongly affected by the 𝜒PT low energy constraints. The most precise calculation of the scattering
length and slope parameter in 𝜒PT has been performed at NNLO in [18]. While the result for
the scattering length is consistent with the recent Roy-Steiner predictions, it seems that there is
a small tension in the slope parameter value. Therefore in our fits to the experimental data (or
pseudo-data from Roy-Steiner analyses) we take NNLO 𝜒PT values as central results, but include
the conservative error-bar, such that it covers the recent Roy-Steiner results [15, 28]. As for the
Adler zeros, we take the NLO values. Since we consider only the single-channel approximation for
𝐼 = 1/2 (and 𝐼 = 3/2), we perform the fit till 𝜂𝐾 threshold of the experimental data. In this way we
also exclude the influence of the 𝐾∗

0 (1430) resonance.
For 𝐼 = 1/2 we observed in [2] that fitting the experimental data or Roy-Steiner analysis of

[15, 28] provided equivalent four parameter fits with close 𝜅/𝐾∗
0 (700) pole positions. In general,

these results compare well with the Roy-Steiner pole position√︃
𝑠
𝑁/𝐷
𝜅 = 702(12)+4

−5 − 𝑖 285(16)+8
−13 MeV [2] ,

√︃
𝑠

Roy-Steiner
𝜅 = 653+18

−12 − 𝑖 280(16) MeV .

The latter we took as a conservative average between [26, 27] and [15, 28]. The one-sigma difference
in the resonance mass can be attributed to the fact, that we are fitting Roy-Steiner solution only in
the elastic region. The resulting phase shifts are shown in Fig 1.

The situation for the non-resonant 𝐼 = 3/2, 𝜋𝐾 scattering resembles the 𝐼 = 2, 𝜋𝜋 scattering.
Again, by fitting either experimental or Roy-Steiner pseudo-data we obtain an unphysical bound
state far away from the threshold. Hence, we impose in the fit the exact fulfilment of p.w. dispersion
relation given by Eq. (3) as an additional constraint and obtain the four-parameter fits. The fit to
experimental data give us the result consistent with Roy-Steiner analysis [15, 28] including the slope
parameter, which tends towards the value 𝑚3

𝜋 𝑏
Roy-Steiner = −0.0471(49) (see Table 2). To minimize

6
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√
𝑠𝐸 , MeV 𝐶0 𝐶1 𝐶2 𝐶3 𝜒2/d.o.f

𝜋𝜋 → 𝜋𝜋, 𝐼 = 2

Fit to Exp.
740

−16.9(1.1) −27.1(2.7) 30.2(9.3) 48.3(13.5) 0.96
Fit to Roy −18.0(7) −30.1(1.9) 27.4(5.6) 49.3(8.1) 0.38

𝜋𝐾 → 𝜋𝐾, 𝐼 = 3/2

Fit to Exp.
818

−20.7(8) 34.8(3.0) 25.7(8.0) −52.0(11.3) 5.64
Fit to Roy −19.8(2) 34.0(1.6) 21.1(1.9) −46.4(4.5) 0.21

Table 1: Fit parameters entering Eq. (7) which were adjusted to reproduce the experimental data (denoted
Exp.) and the most recent Roy-like results (Roy). The parameters for the other channels can be found in [2].

√
𝑠𝐴, MeV 𝑚𝜋𝑎 𝑚3

𝜋𝑏

√︃
𝑠NLO
𝐴

, MeV 𝑚𝜋𝑎
NNLO 𝑚3

𝜋𝑏
NNLO

𝜋𝜋 → 𝜋𝜋, 𝐼 = 2

Fit to Exp. 183(13) −0.044(1) −0.080(1)
182(15) −0.044(1) −0.080(1)

Fit to Roy 180(12) −0.044(1) −0.081(1)

𝜋𝐾 → 𝜋𝐾, 𝐼 = 3/2

Fit to Exp. 522(11) −0.048(5) −0.056(4)
526(11) −0.047 −0.027

Fit to Roy 524(9) −0.047(4) −0.053(1)

Table 2: Fit results for the threshold parameters 𝑎 and 𝑏 and the Adler zeros 𝑠𝐴 (left columns) compared to
𝜒PT values (right columns). The uncertainties on NLO Adler zero positions we estimated as |NLO − LO|,
as explained in the text. The NNLO 𝜒PT values for the threshold parameters are taken from [17, 18]. The
parameters for the other channels can be found in [2].

the uncertainties we also fitted directly the pseudo-data from Roy-Steiner analysis. The phase
shifts obtained from these fits are shown in Fig. 1. The values of the fitted parameters, threshold
parameters and Adler zeros are collected in Tables 1 and 2. The Omnès function is shown in Fig. 2.

4. Conclusion and outlook

We presented a data-driven analysis of the S-wave 𝜋𝜋 → 𝜋𝜋 (𝐼 = 0, 2) and 𝜋𝐾 → 𝜋𝐾

(𝐼 = 1/2, 3/2) reactions using the p.w. dispersion relation. In this approach unitarity and analyticity
constraints are implemented exactly. We accounted for the contributions from the left-hand cuts
using the expansion in a conformal variable, which maps the left-hand cut plane onto the unit circle.
Then, the once subtracted p.w. dispersion relation was solved numerically by means of the 𝑁/𝐷
method.

Using existing experimental information and constraints from 𝜒PT at very low energies we
applied the p.w. dispersion relation for 𝐼 = 0, 1/2, where the positions of 𝜎/ 𝑓0(500), 𝑓0(980) and
𝜅/𝐾∗

0 (700) have already been obtained from the sophisticated Roy and Roy-Steiner analyses. We
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demonstrated that the results for the pole parameters are stable and almost do not change if we
replace the existing experimental data with the very precise pseudo-data generated by Roy and Roy-
Steiner solutions in the physical region. For the non-resonance channels with 𝐼 = 2 and 𝐼 = 3/2, the
fits to experimental data (supplemented with 𝜒PT constraints at threshold and Adler zero) give the
results very close to Roy-like solutions. In particular, it is interesting for the 𝐼 = 3/2 channel, where
there is a tension between the slope parameter calculated in 𝜒PT at NNLO and recent Roy-Steiner
extraction.

The proposed data-driven method is not only limited to the 𝜋𝜋 and 𝜋𝐾 scattering [2]. Recently,
we applied it to the 𝛾𝛾 → 𝐷𝐷̄ reaction, where based on the experimental information we found a
bound state just below the 𝐷𝐷̄ threshold [9].
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