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A coupled-channel approach is applied to the charged tetraquark state 𝑇+
𝑐𝑐 with special attention

paid to the three-body dynamics. The three-body unitarity is preserved as both the pion exchange
between the 𝐷 and 𝐷∗ mesons and the finite 𝐷∗ width are taken into account simultaneously. The
low-energy scattering parameters, namely the scattering length and effective range are extracted
with a low-energy expansion of the 𝐷∗𝐷 scattering amplitude. The compositeness parameter is
calculated and is found to be close to unity, which implies a molecular nature of the 𝑇+

𝑐𝑐. By
making use of the heavy-quark spin symmetry, an isoscalar 𝐷∗𝐷∗ molecular partner of the 𝑇+

𝑐𝑐

with 𝐽𝑃 = 1+ is predicted under the assumption that the 𝐷∗𝐷-𝐷∗𝐷∗ coupled-channel effects can
be neglected.
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1. Introduction

Recently, the LHCb Collaboration discovered a double-charm exotic structure 𝑇+
𝑐𝑐 just below

the 𝐷∗+𝐷0 threshold in the 𝐷0𝐷0𝜋+ invariant mass distribution [1, 2]. The parameters of the
resonance extracted from a generic constant-width Breit-Wigner fit built by LHCb in Ref. [1] are

𝛿𝑚BW = −273 ± 61 ± 5+11
−14 keV,

ΓBW = 410 ± 165 ± 43+18
−38 keV,

where 𝛿𝑚BW defines the mass with respect to the 𝐷∗+𝐷0 threshold. Since approximately 90% of
the 𝐷0𝐷0𝜋+ events contain a genuine 𝐷∗+ meson [2], it is natural to expect the width of the 𝑇+

𝑐𝑐

to be smaller than that of the 𝐷∗+, which is only (83.4 ± 1.8) keV [3]. A more profound analysis,
based on a unitarized and analytical model, is performed by LHCb in Ref. [2]. The extracted pole
is located in the complex energy plane at [2]

√
𝑠pole =

[
−360 ± 40+4

−0 − 𝑖 (24 ± 1+0
−7)

]
keV, (1)

with respect to the 𝐷∗+𝐷0 threshold. The imaginary part of the pole, corresponding to the half
width of the 𝑇+

𝑐𝑐, is in agreement with the natural expectation. While the value of the scattering
length is found to be well constrained, i.e. 𝑎 = [−(7.16 ± 0.51) + 𝑖(1.85 ± 0.58)] fm, the effective
range 𝑟 is consistent with zero and only an upper limit on −𝑟 is provided [2],

0 ⩽ −𝑟 < 11.9 (16.9) fm at 90 (95)% CL. (2)

The Weinberg compositeness criterion [4, 5] making use of the relation between the scattering
length and the effective range generates an upper limit of the compositeness parameter 𝑍 ,

𝑍 < 0.52 (0.58) at 90 (95)% CL, (3)

for which 𝑍 = 1 corresponds to a compact state that does not interact with the continuum while
𝑍 = 0 indicates a composite state formed by hadronic interactions. It implies that the properties of
the 𝑇+

𝑐𝑐 are consistent with a molecular nature. In addition, due to the proximity of the 𝑇+
𝑐𝑐 to the

𝐷∗+𝐷0 threshold and a small energy release in the 𝐷∗+ → 𝐷0𝜋+ decay, a narrow peak just above
the 𝐷0𝐷0 (and 𝐷+𝐷0) threshold is formed in the 𝐷0𝐷0 (𝐷+𝐷0) mass distribution. Nevertheless,
neither the 𝐷+𝐷0𝜋+ nor 𝐷+𝐷+ mass distribution exhibit any narrow peaking structure, which
indicates that the 𝑇+

𝑐𝑐 is an isoscalar state.
The discovery of the𝑇+

𝑐𝑐 quickly spurred numerous phenomenological studies, see e.g. Refs. [6–
9]. In this talk, we investigate the properties of the𝑇+

𝑐𝑐 in the framework of a nonrelativistic effective
field theory constrained with the chiral and heavy-quark spin symmetries. It is noted that the
static approximation for the one-pion-exchange (OPE) in the charmonium/double-charm systems of
interest is not justified since the three-body intermediate state involving the exchanged pion can go
on shell. The three-body effects are expected to have a strong impact on the properties of the𝑇+

𝑐𝑐 due
to the proximity of the three-body threshold to the 𝑇+

𝑐𝑐. Therefore we proceed beyond the simplest
approach based solely on the short-range interactions (see e.g. Ref. [10]) and include the long-range
OPE interactions in a nonperturbative way. A study of the behavior of the scattering amplitude for
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the coupled-channel system and unstable components in the vicinity of the 𝐷∗+𝐷0 threshold results
in the proper determination of the low-energy scattering parameters and the compositeness of the
𝑇+
𝑐𝑐. The 𝐷 (∗)𝐷 (∗) interactions are independent of the heavy-quark spin according to HQSS, which

is employed to predict the existence of a 𝐷∗𝐷∗ molecular state 𝑇∗+
𝑐𝑐 , as a HQSS partner of the 𝑇+

𝑐𝑐.
More details con be found in Refs. [18, 20].

2. Framework

2.1 Interaction potentials

The proximity of the 𝑇+
𝑐𝑐 to the 𝐷∗𝐷 thresholds suggests that the dominating component is a

𝑆-wave 𝐷∗𝐷 pair. The quantum numbers of such a system, 𝐽𝑃 = 1+, perfectly match the observation
of the LHCb Collaboration [1, 2]. The isoscalar (𝐼 = 0) and isovector (𝐼 = 1) combinations can be
constructed as

|𝐷∗𝐷, 𝐼 = 0⟩ = − 1
√

2
(𝐷∗+𝐷0 − 𝐷∗0𝐷+), |𝐷∗𝐷, 𝐼 = 1⟩ = − 1

√
2
(𝐷∗+𝐷0 + 𝐷∗0𝐷+). (4)

The leading order (LO) 𝐷 (∗)𝐷 (∗) contact interaction in the chiral effective field theory contains
only O(𝑝0) contact potentials, with 𝑝 a soft momentum scale [11],

L𝐻𝐻 = − 𝐷10
8

Tr
(
𝜏𝐴𝑎𝑎′𝐻

†
𝑎′𝐻𝑏𝜏

𝐴
𝑏𝑏′𝐻

†
𝑏′𝐻𝑎

)
− 𝐷11

8
Tr

(
𝜏𝐴𝑎𝑎′𝜎

𝑖𝐻
†
𝑎′𝐻𝑏𝜏

𝐴
𝑏𝑏′𝜎

𝑖𝐻
†
𝑏′𝐻𝑎

)
− 𝐷00

8
Tr

(
𝐻†

𝑎𝐻𝑏𝐻
†
𝑏
𝐻𝑎

)
− 𝐷01

8
Tr

(
𝜎𝑖𝐻†

𝑎𝐻𝑏𝜎
𝑖𝐻

†
𝑏
𝐻𝑎

)
,

(5)

where the subscripts 𝑎 (′) , 𝑏 (′) are flavor indices, 𝜏𝐴=1,2,3 denote the isospin Pauli matrices, and the
𝐷00,10,01,11 are low-energy constants (LECs). The heavy-light mesons grouped into a superfield,

𝐻𝑎 = 𝑃𝑎 + ®𝑉𝑎 · ®𝜎, (6)

with 𝑃𝑎 and ®𝑉𝑎 annihilating the ground-state pseudoscalar and vector charmed mesons, respectively,

𝐷 (∗) =

(
𝐷 (∗)0

𝐷 (∗)+

)
. (7)

The 𝑆-wave contact potentials can be derived from the Lagrangian (5),

𝑉 𝐼=0
CT (𝐷∗𝐷 → 𝐷∗𝐷; 𝐽𝑃 = 1+) = −2(𝐷01 − 3𝐷11) ≡ 𝑣0, (8)

𝑉 𝐼=1
CT (𝐷∗𝐷 → 𝐷∗𝐷; 𝐽𝑃 = 1+) = 𝐷00 + 𝐷01 + 𝐷10 + 𝐷11 ≡ 𝑣1, (9)

where we have introduced the isoscalar and isovector interaction strength 𝑣0 and 𝑣1, respectively.
Since the study of the 𝐷𝐷 mass spectra support an isoscalar interpretation of the 𝑇+

𝑐𝑐 [2], in what
follows we stick to the isoscalar contact interaction and neglect the isovector one, that is, 𝑣1 = 0, to
reduce the number of free parameters. Note that the isospin symmetry is assumed for the contact
potential while the breaking effects are taken into account explicitly through the mass difference for
the charged and neutral 𝐷 (∗) ’s and pions.
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The LO OPE potential can be obtained from the effective Lagrangian for the axial coupling of
pions to charmed mesons [12]

L =
1
4
𝑔 Tr

(
®𝜎 · ®𝑢𝑎𝑏𝐻𝑏𝐻

†
𝑎

)
, (10)

where ®𝑢 = −∇Φ/ 𝑓𝜋 with

Φ =

(
𝜋0 √

2𝜋+√
2𝜋− −𝜋0

)
. (11)

Here 𝑓𝜋 = 92.1 MeV is the pion decay constant and the coupling 𝑔 = 0.57 is determined from the
experimentally measured 𝐷∗+ → 𝐷0𝜋+ decay width [3]. Once the OPE is considered, both the 𝑆

and 𝐷 waves are included as their mixture can have a sizable impact on the line shapes between the
thresholds [13–16].

2.2 Lippman-Schwinger equation

One can obtain the 𝐷∗+𝐷0 production amplitude𝑈𝛼 (𝑀, 𝑝) satisfying the three-body unitarity
by solving a Lippmann-Schwinger equations (LSEs),

𝑈𝛼 (𝑀, 𝑝) = 𝑃𝛼 −
∑︁
𝛽

∫
d3 ®𝑞
(2𝜋)3𝑉𝛼𝛽 (𝑀, 𝑝, 𝑞)𝐺𝛽 (𝑀, 𝑞)𝑈𝛽 (𝑀, 𝑞), (12)

where 𝑃𝛼 is the point-like production source with 𝛼 = 1(2) denoting the 𝐷∗+𝐷0 (𝐷∗0𝐷+) channel.
Since we only focus on the isoscalar contact potential, the isopsin symmetry requires that 𝑃2 = −𝑃1
which can then be absorbed by the overall normalization factor.

The three-body cuts give rise to complementary contributions, with a graphical representation
shown in Fig. 1. While the three-body cut associated with the OPE is included in the interaction

Figure 1: Graphical representation for the three-body cuts (shown with the vertical dotted red lines).

potential𝑉𝛼,𝛽 (𝑀, 𝑝, 𝑞) in Eq. (12), the cut associated with the 𝐷∗ self-energy is encoded in the full
𝐷∗𝐷 propagators

𝐺1(𝑀, 𝑝) = 𝐺3(𝑀, 𝑝) =
[
𝑚∗

𝑐 + 𝑚0 +
𝑝2

2𝜇𝑐0
− 𝑀 − 𝑖

2
Γ𝑐 (𝑀, 𝑝)

]−1

,

𝐺2(𝑀, 𝑝) = 𝐺4(𝑀, 𝑝) =
[
𝑚∗

0 + 𝑚𝑐 +
𝑝2

2𝜇0𝑐
− 𝑀 − 𝑖

2
Γ0(𝑀, 𝑝)

]−1

, (13)
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where the reduced masses are 𝜇𝑐0 = 𝑚∗
𝑐𝑚0/(𝑚∗

𝑐 + 𝑚0) and 𝜇0𝑐 = 𝑚∗
0𝑚𝑐/(𝑚∗

0 + 𝑚𝑐), and the
energy-dependent widths read [17, 18]

Γ𝑐 (𝑀, 𝑝) = Γ(𝐷∗+ → 𝐷+𝛾) + 𝑔2𝑚0

12𝜋 𝑓 2
𝜋𝑚

∗
𝑐

Σ𝐷0𝜋+𝐷0 (𝑀, 𝑝, 𝜇𝑐0) +
𝑔2𝑚𝑐

24𝜋 𝑓 2
𝜋𝑚

∗
𝑐

Σ𝐷+𝜋0𝐷0 (𝑀, 𝑝, 𝜇𝑐0),

Γ0(𝑀, 𝑝) = Γ(𝐷∗0 → 𝐷0𝛾) + 𝑔2𝑚0

24𝜋 𝑓 2
𝜋𝑚

∗
0
Σ𝐷0𝜋0𝐷+ (𝑀, 𝑝, 𝜇0𝑐)

+ 𝑔2𝑚𝑐

12𝜋 𝑓 2
𝜋𝑚

∗
0

[
Σ𝐷+𝜋−𝐷+ (𝑀, 𝑝, 𝜇0𝑐) − Σ𝐷+𝜋−𝐷+ (𝑚𝑐 + 𝑚∗

0, 0, 𝜇0𝑐)
]
,

where

Σ𝑖 𝑗𝑘 (𝑀, 𝑝, 𝜇) =
[
2𝜇𝑖 𝑗

(
𝑀 − 𝑚𝑖 − 𝑚 𝑗 − 𝑚𝑘 −

𝑝2

2𝜇

)]3/2

, (14)

with 𝜇𝑖 𝑗 = 𝑚𝑖𝑚 𝑗/(𝑚𝑖 + 𝑚 𝑗). To render the integrals in the LSEs in Eq. (12) well defined we
regularize them with a sharp cutoff Λ. We have verified that the physical observables are almost Λ-
independent in the range Λ ∈ [0.3, 1.2] GeV. Below we present the numerical results corresponding
to Λ = 0.5 GeV.

3. Data analysis

3.1 Fit to the 𝐷0𝐷0𝜋+ spectrum

D⇤+
D0, p̄(p)

⇡+

D0, p(p̄)

=
D⇤+

D0, p̄(p)

⇡+

D0, p(p̄)

⇥ �

D⇤+

D0

D⇤+
D0, p̄(p)

⇡+

D0, p(p̄)

⇥ �

D⇤0

D+

D⇤+
D0, p̄(p)

⇡+

D0, p(p̄)

⇥

Figure 2: Graphical representation for the production amplitude in the 𝐷0𝐷0𝜋+ channel with the 𝐷𝐷∗ final
state interaction.

The production rate for the three-body 𝐷0𝐷0𝜋+ channel, with a diagrammatic representation
shown in Fig. 2, is calculated as [17, 18]

d Br[𝐷0𝐷0𝜋+]
d 𝑀

= N
∫ 𝑝max

0
𝑝 d𝑝

∫ 𝑝̄max

𝑝̄min

𝑝 d𝑝 |𝑞𝜋𝑈1(𝑀, 𝑝)𝐺1(𝑀, 𝑝) + 𝑞𝜋𝑈1(𝑀, 𝑝)𝐺1(𝑀, 𝑝) |2 ,

where N is a normalization constant,

𝑞𝜋 =

√︄
2𝜇𝐷0𝜋+

(
𝑀 − 2𝑚0 − 𝑚𝜋+ − 𝑝2

2𝜇𝑝

)
, 𝑞𝜋 =

√︄
2𝜇𝐷0𝜋+

(
𝑀 − 2𝑚0 − 𝑚𝜋+ − 𝑝2

2𝜇𝑝

)
,

and

𝑝max =

√︃
2𝜇𝑝 (𝑀 − 2𝑚0 − 𝑚𝜋+), 𝑝min,max =

�����
√︄

2𝜇𝐷0𝜋+

(
𝑀 − 2𝑚0 − 𝑚𝜋+ − 𝑝2

2𝜇𝑝

)
∓ 𝑚0𝑝

𝑚0 + 𝑚𝜋+

����� ,
with 𝜇𝑝 = 𝑚0(𝑚0 + 𝑚𝜋+)/(2𝑚0 + 𝑚𝜋+).

In order to assess the role of the three-body effects, we consider three different fit schemes:

5
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T +
cc BW mass

Background

Figure 3: Fitted line shapes before (left) and after (right) convolution with the energy resolution function.

• Scheme I (no three-body effects): only the LO contact potentials are employed with the
constant 𝐷∗ widths, Γ0(𝑀, 𝑝) = 53.7 keV and Γ𝑐 (𝑀, 𝑝) = 82.5 keV.

• Scheme II (partial three-body effects): the dynamical widths of the 𝐷∗ mesons are imple-
mented (left diagram in Fig. 1) while the OPE potential is not included (right diagram in
Fig. 1).

• Scheme III (full three-body effects): the OPE potentials are added to Scheme II for a complete
account for the full three-body effects.

In all schemes above, the background is taken from the LHCb analysis in Refs. [1, 2]. In addition,
the detector resolution is modeled by a sum of two Gaussian functions as given in Ref. [2].

The fit results for the three fit schemes are shown in Fig. 3, where the quoted value of 𝜒2/d.o.f.
can be employed to assess the quality of the corresponding fit. The positions of the pole responsible
for the 𝑇+

𝑐𝑐 in each scheme are collected in Table 1. The real and imaginary parts of the pole are
identified with the binding energy and half width of the 𝑇+

𝑐𝑐, respectively. In Scheme I, where a
constant width of the 𝐷∗ is employed and hence no three-body cut is involved, the𝑇+

𝑐𝑐 pole is located
on the first (physical) Riemann sheet (RS-I), just below the 𝐷∗+𝐷0 threshold and thus corresponds
to a shallow bound state. It is worth mentioning that by including a constant 𝐷∗ width, one distorts
the two-body cut, which does not any longer spread along the real axis, so that the pole on the RS-I
below the threshold acquires an imaginary part.

Scheme I (RS-I) II (RS-II) III (RS-II)
Pole [keV] −368+43

−42 − 𝑖(37 ± 0) −333+41
−36 − 𝑖(18 ± 1) −356+39

−38 − 𝑖(28 ± 1)

Table 1: The position of the 𝑇+
𝑐𝑐 pole relative to the 𝐷∗+𝐷0 threshold and the Riemann sheet (RS) where it

is located for the three fitting schemes employed (see the text for further details). The errors are statistical,
propagated from the uncertainties in the LHCb data, while those from the cutoff variation are well within the
uncertainties quoted here.

When the three-body channels are included explicitly in Schemes II and III, the three-body
cuts appear with the branch points at the three-body thresholds. In these two schemes, the 𝑇+

𝑐𝑐 pole

6
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is located on the lower half plane of the second Riemann Sheet (RS-II) connected to the physical
region (upper half plane of RS-I) along the three-body cut. It is instructive to notice that neglecting
the three-body dynamics one overestimates the 𝑇+

𝑐𝑐 width by up to a factor of 2, which is consistent
with the observation obtained in Refs. [16, 17]. By comparing the imaginary parts of the pole
positions for Schemes II and III, one can conclude that the OPE contributes around 20 keV into the
𝑇+
𝑐𝑐 width.

3.2 Low-energy expansion of the scattering amplitude

The 𝐷∗𝐷 → 𝐷∗𝐷 scattering amplitude can be obtained by solving a coupled-channel LSE,

𝑇𝛼𝛾 (𝑀, 𝑝, 𝑝′) = 𝑉𝛼𝛾 (𝑀, 𝑝, 𝑝′) −
∑︁
𝛽

∫
d3 ®𝑞
(2𝜋)3𝑉𝛼𝛽 (𝑀, 𝑝, 𝑞)𝐺𝛽 (𝑀, 𝑞)𝑇𝛽𝛾 (𝑀, 𝑞, 𝑝′). (15)

A study of the behavior of the scattering amplitude in the vicinity of the 𝐷∗+𝐷0 branch point results
in a determination of the low-energy 𝑆-wave scattering parameters, that is, the scattering length 𝑎0
and effective range 𝑟0 defined as

𝑇𝐷∗+𝐷0→𝐷∗+𝐷0 (𝑘) = − 2𝜋
𝜇𝑐0

(
1
𝑎0

+ 1
2
𝑟0𝑘

2 − 𝑖𝑘 + O(𝑘4)
)−1

. (16)

It is important to notice that a finite 𝐷∗ width drives the three-momentum 𝑘 ill-defined in the
vicinity of the two-body 𝐷∗𝐷 threshold with a real 𝐷∗ mass. In order to get a deeper insight into
the effects of the finite 𝐷∗ width, let us start from a single-channel problem with a constant contact
potential 𝑣c which corresponds to a single-channel version of the Scheme I introduced above. Then
the inverse amplitude reads

𝑇−1(𝑀) = 𝑣−1
c + 𝐽 (𝑀), 𝐽 (𝑀) =

∫
d3 ®𝑝
(2𝜋)3𝐺 (𝑀, 𝑝). (17)

In this trivial example, the effective range 𝑟0 ∝ −Red𝐽 (𝑀)
d𝑀

����
𝑀=𝑀thr+0+

with 𝑀thr for the corresponding

two-body threshold. A finite width of the 𝐷∗, however, significantly modifies the behavior of the
𝐽 (𝑀) in the vicinity of the two-body threshold as the sharp cusp is smeared by the 𝐷∗ width, see
Fig. 4. Therefore the effective range expansion around the 𝐷∗𝐷 threshold has a very small radius
of convergence because of the nearby complex 𝐷∗𝐷 branch point. A way to bypass this problem is
to employ a complex 𝐷∗ mass in the relation between the energy and momentum 𝑘 ,

𝑀 = 𝑚∗
𝑐 − 𝑖Γ𝑐/2 + 𝑚0 +

𝑘2

2𝜇𝑐0
. (18)

Then the expansion point 𝑘 → 0 is equivalent to 𝑀 = 𝑚∗
𝑐 − 𝑖Γ𝑐/2 + 𝑚0 in the complex energy

plane, which is the branch point for the two-body unitarity cut on the unphysical RS. In other words,
the effective range expansion is defined around the pole of the 𝐷∗𝐷 two-body Green’s function
𝐺 (𝑀, 𝑝). The effective range expansion with the scattering parameters extracted this way are
collected in Table 2.

For the coupled-channel approach involving both the 𝐷∗+𝐷0 and 𝐷∗0𝐷+ channels, it is shown
in Ref. [20] that the largest contribution to the effective range for the 𝑇+

𝑐𝑐 originates from the isospin
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Figure 4: Left: The real part of the single-channel loop function 𝐽 (𝑀) for a zero (blue solid line) and finite
(red dashed line) constant 𝐷∗+ width. The vertical dotted line indicates the 𝐷∗+𝐷0 threshold.

− 𝜇𝑐0
2𝜋

𝑇thr [fm] 𝑎0 [fm] 𝑟0 [fm] 𝑟 ′0 [fm] 𝑋̄𝐴

I
(
−7.38+0.46

−0.57
±0.36

)
+𝑖

(
1.96+0.34

−0.57
±0.18

) (
−6.31+0.36

−0.45
±0.27

)
+𝑖

(
0.05+0.01

−0.01
±0.00

)
−2.78 ± 0.01

± 0.66
1.00 ± 0.01

± 0.66
0.87 ± 0.01

± 0.07

II
(
−8.00+0.49

−0.68
±0.35

)
+𝑖

(
1.88+0.36

−0.24
±0.18

) (
−6.64+0.36

−0.50
±0.27

)
−𝑖

(
0.10+0.01

−0.02
±0.01

)
−2.80 ± 0.01

± 0.59
0.98 ± 0.01

± 0.59
0.88 ± 0.01

± 0.06

III
(
−7.76+0.45

−0.53
±0.32

)
+𝑖

(
2.44+0.38

−0.29
±0.18

) (
−6.72+0.36

−0.45
±0.27

)
−𝑖

(
0.10+0.03

−0.03
±0.03

)
−2.40 ± 0.01

± 0.85
1.38 ± 0.01

± 0.85
0.84 ± 0.01

± 0.06

Table 2: The scattering length 𝑎0 and ‘bare’ effective range 𝑟0 defined in Eq. (16), the corrected effective
range 𝑟 ′0 = 𝑟0 − Δ𝑟IB obtained as explained in the text, and the compositeness 𝑋̄𝐴 evaluated using Eq. (19).
For each quoted value, the error in the first line is statistical, propagated from the LHCb data, while the error
in the second line is systematic, from the model uncertainty. The latter is estimated by varying the cutoff
parameter Λ in the interval [0.3, 1.2] GeV and taken as the largest deviation from the central value evaluated
for Λ = 0.5 GeV.

breaking (IB) related to the small mass differences between the 𝐷∗+𝐷0 and 𝐷∗0𝐷+ channels. This
gives rise to Δ𝑟IB = −3.78 fm [20]. By comparing the isospin-violation-corrected effective range
𝑟 ′0 = 𝑟0 − Δ𝑟IB for Schemes I and II quoted in Table 2, it is found that the residual finite range
correction is ≈ 1 fm for Λ = 0.5 GeV. A comparison of the effective range for Schemes I/II and III
indicates the difference ≈ 0.4 fm from the OPE.

The Weinberg compositeness parameter 𝑋̄𝐴 can be constructed from the scattering length and
effective range as [4, 5]

𝑋̄𝐴 =

(
1 + 2

���� 𝑟 ′0
Re 𝑎0

����)−1/2

, (19)

for which 𝑋̄𝐴 ≈ 1 corresponds to a composite state formed by the 𝐷∗ and 𝐷, while 𝑋̄𝐴 ≈ 0 implies

8
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a compact state. The compositenes 𝑋̄𝐴 estimated for each scheme is listed in the sixth column of
Table 2.

4. Heavy-quark spin symmetry partners of the 𝑇+
𝑐𝑐

According to HQSS, the interaction in the 𝐷∗𝐷 and 𝐷∗𝐷∗ systems with 𝐽𝑃 = 1+ is the same,

𝑉 𝐼=0(𝐷∗𝐷∗ → 𝐷∗𝐷∗, 1+) = 𝑉 𝐼=0(𝐷∗𝐷 → 𝐷∗𝐷, 1+). (20)

Therefore, the existence of the isoscalar 𝑇+
𝑐𝑐 hints at a possible existence of an additional 𝐷∗𝐷∗

state in the isoscalar 𝐽𝑃 = 1+ sector, 𝑇∗+
𝑐𝑐 . An accurate prediction of its properties meets certain

problems since, as proved in Refs. [13–16], renormalization of the OPE requires inclusion of the
next-to-leading order contact interaction to be fixed from experimental data with a nontrivial signal
far beyond just the near-threshold region. Furthermore, the 𝐷∗𝐷∗ two-body propagator contains a
four-body cut which is beyond the scope of this work. Nonetheless, as an estimation, we neglect
the 𝐷∗𝐷-𝐷∗𝐷∗ coupled-channel effects and rely on Eq. (20) for the contact potentials. The role of
the OPE is assessed by comparing the predictions for the 𝑇∗+

𝑐𝑐 pole obtained in different schemes.
We find that while the width of the 𝑇+

𝑐𝑐 is sensitive to the 𝐷∗ width, its mass is stable with
respect to different treatments of the 𝐷∗ width. Therefore, as long as only the mass of the 𝑇∗+

𝑐𝑐 is
concerned, it is safe to resort to a stable 𝐷∗. Then the 𝑇∗+

𝑐𝑐 reveals itself as a bound state pole in the
isoscalar 𝐷∗𝐷∗ system with 𝐽𝑃 = 1+ and the binding energy 𝛿∗+𝑐𝑐 = 𝑚𝑇∗+

𝑐𝑐
− (𝑚∗

𝑐 + 𝑚∗
0),

Scheme I: 𝛿∗+𝑐𝑐 = −1444(61) keV,

Scheme II: 𝛿∗+𝑐𝑐 = −1138(50) keV, (21)
Scheme III: 𝛿∗+𝑐𝑐 = −503(40) keV.

A large (∼ 1 MeV) spread in the predicted mass of the 𝑇∗+
𝑐𝑐 signals a possibly significant role of the

OPE.
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