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The pole counting rule is a powerful and model-independent method to distinguish a confining
state from a hadronic molecule. It has been applied to the explorations of - (6900), -1 (2900) as
well as /2 (3900), - (3872), - (4660), etc.. For - (6900), both a confining state and a molecular
state are not excluded, because lacking of enough data. For -1 (2900), the analysis shows that it
should be a �̄1 molecule, with �% = 1− and an iso-singlet interpretation is much more favorable.
Finally, it is noted that almost all X, Y, Z particles with exotic quantum numbers can be interpreted
as hadronic molecules. The - (3872) is, however, more like a charmonium, since it has a 2̄2
quantum number.
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1. Introduction

In the past 20 years, many X, Y, Z states have been observed. These states cannot be explained
by ordinary quark model for mesons and baryons which have valence quarks of @̄@ and @@@,
respectively. So, a natural idea could be that these states have multiquark constituents, i.e., they
may have valence quarks of @̄@̄@@, @̄@@@@. An explanation for these multiquark states is that
they are compact or elementary states, whose building blocks are quarks and anti-quarks and they
interact with each other by exchanging gluons. However, there is another explanation that these X,
Y, Z states are molecules of ordinary hadrons. From this point of view, the building block of these
states are ordinary mesons or baryons and they interact with each other by exchanging color neutral
forces. On the one hand, multiquark states are not forbidden by our present understanding of QCD,
the underlying theory of strong interaction and this indicates that the compact state explanation is
possible. On the other hand, these states are always observed near the thresholds of two-hadron
channels which indicates that the hadronic molecule explanation is also possible. So, it is important
to distinguish hadronic molecules from compact states and this has become one of the most active
topics in hadron physics.

Many methods are proposed to do this task, for example, QCD sum rule, quasi-BS equation,
diquark model, etc [1, 2]. In this paper, the pole counting rule (PCR), a model-independent method
will be introduced and some applications on X, Y, Z states such as - (3872), /2 (3900), - (4660)
as well as - (6900), -1(2900) will be reviewed. For - (3872), the result from PCR suggests that
it is more like a charmonium, i.e., not a hadronic molecule [3, 4]. The same situation also happens
on - (4660) [5]. As for /2(3900) and -1(2900), they are regarded as hadronic molecules of
�̄∗� [6, 7] and �̄1 [8], respectively. Furthermore, due to lack of experimental data on - (6900),
the fit results which are regarded as compact states as well as the results which are regarded as
hadronic molecules according to PCR have the same fit goodness. So, one cannot confirm the
nature of - (6900) from current data [9].

This talk will be organized as follows, firstly, the statements of PCR will be briefly reviewed.
Then, the applications of PCR on - (3872), /2 (3900), - (4660) as well as - (6900), -1(2900)
will be introduced. Finally, some conclusions will be made.

2. The pole counting rule

In this section, the statements of the pole counting rule will be introduced briefly. This method
was proposed by D. Morgan in 1992 [10]. Consider an (-wave scattering amplitude:

) = (" − 8:)−1, (1)

where : is the momentum of scattering particles, and the pole position is determined by " − 8: = 0.
If it is a potential scattering, then " can be written in the form of effective range expansion:

" = − 1
00
+ A0

2
:2 +$

(
:4

)
, (2)

where 00 is the scattering length and A0 is the effective range. Substitute (2) into the equation
" − 8: = 0, a quadratic equation with respective to pole position is obtained. Two roots of this
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equation satisfy:

|:1 | + |:2 | ≥
2
|A0 |

, (3)

where effective range of strong interaction usually takes the value of about (200MeV)−1, so the r.h.s.
of the inequality (3) is a quite large quantity. On the one hand, in order to satisfy this inequality,
there is only one pole can appear around the threshold and another pole should located far enough
from the threshold to make the l.h.s. of (3) big enough. On the other hand, the potential scattering
scenario means that the pole is dynamically generated, i.e., it represents that the structure should
be regarded as a hadronic molecule.

Moreover, if the pole hardly couples to the hadronic channel in which the structure is observed,
then the pole will behave more like a CDD pole in the N/D method. In other words, the pole is
more "elementary" and cannot be generated from hadron interactions. It should be regarded as a
compact state. In this situation, " can be written as,

" =
:2 − :2

0
62 , (4)

two roots satisfy,
|:1 | + |:2 | ≥ 62. (5)

If the coupling constant 6 is small, two poles can be found around the threshold in this case.
So, the pole counting rule provides a model-independent method to distinguish hadronic

molecules from compact states. In the (-wave scattering, if there is only one pole near the
threshold, then the scattering state should be regarded as a hadronic molecule. If there are two poles
around the threshold, the scattering state should be regarded as a compact state. Usually, the poles
will be searched for in the complex energy plane, but the criteria of molecular states and compact
states are the same. It is noted that if there are more than one couple channels, the poles will have
imaginary parts since the resonance can decay into lower channels and the pole positions will move
to the complex energy plane. Furthermore, the PCR is still a qualitative method, and the efforts for
a quantitative version can be found in [11].

3. Applications

In this section, the applications of PCR on X, Y, Z states such as - (3872), /2 (3900), - (4660)
as well as - (6900), -1(2900) will be introduced.

3.1 - (3872)

- (3872) was firstly observed in 2003 in the �/kc+c− final state [12] and then it was observed
in �̄0�0c0 final state and near the threshold of �̄0∗�0 [13]. So, it is natural to think - (3872) to
be a molecule of �̄∗� or a compact state, e.g., a charmonium or a tetraquark state.

In order to study the nature of - (3872), Ref. [4] considered the coupling between - (3872)
and �̄∗0�0, �∗−�+, as well as �/kc+c−, �/kc+c−c0. Using Flatté-like parametrization, the data
sets corresponding to the final states of �̄∗0�0, �̄0�0c0, �/kc+c− were fitted. During the fitting,
the parameter Γ2 which represents the decay width of some modes far away from the threshold such
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as k ′W can provide important information on the nature of - (3872). If - (3872) is a charmonium,
then its most important hidden-charm decay mode is the inclusive light hadronic decay. In this case,
Γ2 ∼ O(1) MeV [14]. But if - (3872) is a �̄∗0�0 molecule, the most important hidden-charm decay
mode is decaying to j2�cc. In this case, Γ2 is expected to be smaller than Γ�/kcc ∼0.05MeV [15].

Besides Γ2 , the parameterB representing the branch ratio of �→ - (3872) is also important.
From the fit results, it is found that if B takes a reasonable value, there always exist two poles near
the threshold and Γ2 will be at O(1) MeV which supports the charmonium statement. However, the
fit result corresponding to pure molecular state where there is only one pole near the threshold can
also be found. But in this case, the value of B is too large to be realistic and Γ2 is of O(1) MeV
which is inconsistent with the analyses in Ref. [15]. So, with the help of PCR, it is suggested in
Ref. [4] that - (3872) is more like a charmonium rather than a pure hadronic molecule, but the
coupling to �̄∗0�0 is also important, since the pole of - (3872) is located around the threshold of
�̄∗0�0.

Furthermore, in Ref. [3] the dynamically generated - (3872) which is produced by �̄∗� bubble
chain and the explicitly introduced - (3872) as well as the competition between these two schemes,
were under consideration. It is found that a pure explicitly introduced - (3872) (called Fit I in
Ref. [3]) can fit the data better than a pure dynamically generate - (3872) (called Fit II in Ref. [3])
as shown in Fig. 1. As the results, Fit I gives more than one pole around the threshold of �̄∗�.
According to the PCR, it suggests that - (3872) is more like a charmonium rather a hadronic
molecule.

Figure 1: Fitting results of two methods in Ref. [3].

3.2 /2 (3900)

/2 (3900) is another well known exotic state besides - (3872). It was firstly observed in the
�/kc final state by BESIII [16], with the mass (3899.0 ± 3.6) MeV and the width (46 ± 10) MeV
determined by Breit-Wigner fit. Soon after, /2 (3900) was also observed in the �̄∗� final state [17]
where the peak is very close to the threshold. So, a natural assumption is regarding it as the hadronic
molecule of �̄∗�, but the scenario that /2 (3900) is a compact state, e.g. a tetraquark state cannot
be excluded.
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Ref. [6] constructed the amplitudes of processes 4+4− → �/kcc, �̄�∗c, ℎ2cc and fitted the
invariant mass spectrum of cc, �/kc, �̄∗� simultaneously. Two mechanisms are involved, one is
dynamically generated by �̄∗� contact interaction (corresponding to Fit I) and another is exchanging
explicit /2 in B channel (corresponding to Fit II). These two mechanisms are quite different, but they
can lead to the same result as shown in Ref. [6]. Only one pole can be found around the threshold
of �̄∗� in both Fit I and Fit II. In Fit I, the pole is located at (3.880− 0.0048) GeV and in Fit II, the
pole is located at (3.979 − 0.0018) GeV. According to the PCR, it can be concluded that /2 (3900)
is a hadronic molecule of �̄∗�.

3.3 - (4660)

The PCR was also applied to study the properties of - (4660). - (4660) was firstly observed
by Belle [18] in 2007. Later, it was observed in the final state Λ2Λ̄2 [19] and the peak is near the
threshold of Λ2Λ̄2 . However, in 2017, BESIII released new data on - (4660) and it was shown that
the new data conflicted with previous data.

As shown in Ref. [5], this conflict between the old and the new data can be explained by a
virtual pole near the Λ2Λ̄2 threshold rather than the threshold enhancement of electromagnetic
force. The Λ2Λ̄2 contact interactions, as well as a - (4660) Breit-Wigner resonance are combined
to explain the odd line-shape. The cross sections of 4+4− → Λ2Λ̄2 and 4+4− → k ′cc are fitted. A
K-matrix formula which mixes the contact interaction and B channel - (4660) exchange is used to
describe Λ2Λ̄2 final state interactions :

� =
1

1 − 8d =
1

1 − 8d()- + )ci)
, (6)

where d is the two-body phase space factor of Λ2Λ̄2 and )- , )ci are the tree diagrams of B channel
Λ2Λ̄2 → - (4660) → Λ2Λ̄2 and Λ2Λ̄2 contact vertex as final states interactions. From the pole
analyses, there is a stable virtual pole with mass of "+ = (4.566 ± 0.003) GeV. Furthermore,
- (4660) is a compact state, if exists, since there are two nearby poles.

3.4 - (6900) and - (4260)

In 2020, LHCb observed a structure around 6.9 GeV, named as - (6900), in the di-�/k invariant
mass spectrum [21]. This state is the first observed state which has four (anti-) charm quarks as
valence quarks. Since it is difficult to produce 2̄2 from the vaccum, so - (6900) is hardly a excited
charmonium. For this reason, most studies suggested that - (6900) is a tetraquark state [22, 23]
or a hadronic molecule [24, 25]. In Ref. [9], Flatté-like parametrization was involved to describe
the structure around 6.9 GeV as well as a higher structure around 7.2 GeV, called - (7200). Using
this parametrization, the di-�k invariant mass spectrum was fitted and the nature of these structures
were analysed according to the PCR.

Three types of fits are carried out in Ref. [9] called S-S coupling, P-P coupling, S-P (or P-S)
coupling, where the first and the second character represent the angularmomentum quantum number
of channels coupled to - (6900) and - (7200), respectively. From the results, it is found that both
the solutions of compact states and the solutions of molecular states can be found and these two
types of solutions have almost the same fit goodnesses (an example is shown in Fig. 2). As an
example, the pole positions of S-S couplings are listed in Tab. 1. Here, the solution I stands for
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compact state and solution II stands for hadronic molecule. Three cases for the - (6900) coupling
are under consideration: Case I: �/k�/k and �/kk(3770), Case II: �/k�/k and �/kk2(3823),
Case III:�/k�/k and �/kk3(3842). For - (7200), the �/k�/k and the near-threshold �/k k(4160)
channels are used in the couple channel analysis.

(a) (b)

Figure 2: Fit results of case I in S-S coupling in Ref. [9]: (a): compact state, (b): molecular state.

Case State Sheet II Sheet III

Sol. I

I
- (6900) 6885.4 − 68.08 6874.4 − 80.08
- (7200) 7202.2 − 16.68 7187.1 − 18.08

II
- (6900) 6947.6 − 172.08 6810.4 − 274.08
- (7200) 7220.8 − 31.08 7220.8 − 31.08

III
- (6900) 6845.2 − 117.08 6789.2 − 138.08
- (7200) 7221.9 − 28.08 7221.9 − 28.08

Sol. II

I
- (6900) 6937.9 − 97.08 6527.3 − 323.08
- (7200) 7210.7 − 27.58 7037.3 − 47.58

II
- (6900) 6933.9 − 111.08 6443.8 − 275.08
- (7200) 7218.9 − 24.08 7067.9 − 41.58

III
- (6900) 6933.3 − 113.08 6452.3 − 275.08
- (7200) 7221.9 − 23.08 7073.7 − 41.08

Table 1: Summary of pole positions (written in MeV) for ( − ( couplings. In practice, it is adopted that if a
pole is more than three times of line-shape width away from the threshold, it can be seen as a faraway pole. So,
for every case, there is only one nearby pole in solution II. The Riemann sheets are defined by changing signs
of the phase space factors for the first and the second couple channels where (+, +), (−, +), (−,−), (+,−)
stand for the sheet I, II, III, IV, respectively.

According to the pole analysis in Ref. [9], the nature of - (6900) as well as - (7200) cannot be
determined using current data. So, more data are required to study their properties better.

It is worthwhile to mention that in Refs. [26, 27], similar methods are applied to study - (4260),
another exotic state. The couplings to two nearby channels, lj20, �

∗
B�̄
∗
B are carefully considered.

The results shows that with a reasonable production widths of 4+4− → - (4260), the couplings
of - (4260) to these channels are not strong enough to form a hadronic molecule, i.e., - (4260) is
more like a compact state.
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3.5 -1(2900)

In 2020, LHCb observed a spin-1 resonance around 2.9 GeV in the �− + invariant mass
spectrum, labeled as -1(2900) [28]. This resonance is near the threshold of �̄1 and �̄∗ ∗, so it is
more likely to be a hadronic molecule of these two hardron pairs. However, -1(2900) has �% = 1−

given by the experiment, and an (-wave �̄∗ ∗ molecule and �̄1 molecule has �% = 1+, 1−,
respectively. So, if -1(2900) is a hadronic molecule, it is more likely to be a molecule of �̄1 .

In Ref. [8], two schemes of the production of -1(2900) are taken into consideration. One is
to produce -1(2900) dynamically and another is to introduce -1(2900) explicitly. In these two
schemes, channel �̄ and �̄1 are involved. The dynamically generated -1(2900) is achieved by
the couple channel K-matrix formula,

) = K · [1 − 8d(B)K]−1, K =

(
T�̄ →�̄ T�̄ →�̄1 + P12

T�̄1 →�̄ + P12 T�̄1 →�̄1 

) � �
, (7)

where d = diag{d�̄ , d�̄1 }, is the diagnoal matrix of phase space factors, T s are the tree level
diagrams with special isospin and angular momentum, P12 is a first order polynomial of c.m. energy
to simulate the effects from higher order interactions such as vector meson exchanging diagrams in
physical region. The explicitly introduced -1(2900) is achieved by the Flatté-like parametrization.

The isospin symmetry is considered in the method of couple channel K-matrix, however, the
values of parameter Z1 which is involved in the tree-level amplitude T�̄ →�̄1 are quite different
in iso-singlet and iso-triplet solutions. This parameter comes from the interaction lagrangian [29],

L = −8Z1

〈
�̄
(&̄)
0

(
V` − d`

)
01
)
(&̄)`
1

〉
+ h.c., (8)

where �̄ (&̄) is the field operator with �% = 0− such as �̄ and ) (&̄) is the field operator with �% = 1+

such as �̄1. d` is the vector meson octet. So, in principle, the parameter Z1 should be estimated
from the decay �1 → � + d(l), but this process is forbidden kineically. In Ref. [30], it is estimated
from the process  1 →  d and takes the value of about ±0.16 . Since the corresponding values of
Z1 given by the iso-triplet solution and iso-singlet solution are 5.85 ± 2.00 and −0.9 ± 0.48, so it
indicates that -1(2900) is an iso-singlet.

In both two schemes, there is only one pole found near the threshold of �̄1 . For dynamically
generated -1(2900), the pole is located at (2.928 − 0.0348) GeV and for explicitly introduced
-1(2900), the pole is located at (2.910 − 0.0398) GeV. According to the PCR, this suggests that
-1(2900) is a hadronic molecule of �̄1 and at this time, two different schemes lead to the same
conclusion, just like the study of /2 (3900) in Ref. [7].

4. Summary and conclusion

In this talk, it is showen that PCR provides a model-independent method to distinguish hadronic
molecules from compact states. But it still has a disadvantage that only (-wave amplitudes can be
used as inputs. Nevertheless, almost all the known molecular states are (-wave couplings, so this
method is well practical.

In this talk, the applications of PCR in studying someX,Y, Z states such as - (3872), /2 (3900),
- (4660), - (6900), -1(2900) are reviewed. With the help of PCR, - (3872) is regarded as
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(a) (b)

Figure 3: Fit results in Ref. [8] for (a): dynamically generated -1 (2900) with ��% = 01−, (b): explicitly
introduced -1 (2900). These two fits have almost the same goodness and only one pole is found near the
threshold of �̄1 in both cases.

charmoniums, i.e., compact states and /2 (3900), -1(2900) are suggested to be hadronic molecules
of �̄∗� and �̄1 , respectively. For - (6900), its nature cannot be well determined using current
data, so more experimental information are required. Furthermore, it is mentionable that in some
works, molecule solutions for - (3872) can be found, e.g., in Ref. [31] where it is argued that �̄∗�
molecule. However, the analysis for the decay width to lower channels Γ2 and the � decay branch
ratio B(�→ - (3872) ) as shown in Refs. [3, 4] suggest that - (3872) is more like a charmonium
despite the strong coupling to �̄∗�.

From the applications listed in this paper, it is suggested that all the X, Y, Z states which
have exotic quantum number are more likely to be hadronic molecules and the state like - (3872),
is compact states since they have 2̄2 quantum numbers. For more discussion about methods in
studying exotic hadron states, one is referred to the review [32].
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