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We summarize recent evidence, both from lattice QCD and chiral perturbation theory, that sug-
gests that larger-than-expected excited-state contamination could be the reason for the tension
between phenomenological determinations and previous direct lattice-QCD calculations of the
pion–nucleon sigma term 𝜎𝜋𝑁 . In addition, we extend the 𝜒PT analysis by calculating the cor-
rections due to including the Δ(1232) resonance as an explicit degree of freedom. This correction
is found to be small, thereby corroborating the excited-state effects found in the Δ-less calculation
and the result for 𝜎𝜋𝑁 .
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1. Introduction

In Ref. [1], we proposed a possible resolution to a persistent tension between lattice-QCD and
phenomenological determinations of the pion–nucleon 𝜎-term 𝜎𝜋𝑁 . This quantity describes the
coupling of the nucleon to an isosymmetric scalar current comprised of the two lightest quarks and
appears prominently in searches for physics beyond the Standard Model whenever scalar currents
play a role, e.g., in direct-detection searches for dark matter [2–6], lepton flavor violation in ` → 𝑒

conversion in nuclei [7, 8], and electric dipole moments [9–12]. Even though there is no scalar probe
in the Standard Model, 𝜎𝜋𝑁 can still be extracted from data on pion–nucleon (𝜋𝑁) scattering via
the Chang–Dashen low-energy theorem [13, 14]. Such determinations have a long history [15, 16],
with all recent determinations converging on a value around 60 MeV, irrespective of whether the
𝜋𝑁 input is taken from data on pionic atoms [17–23] or low-energy 𝜋𝑁 cross sections [24]. In
contrast, most lattice calculations [25–29] (with the exception of Ref. [30]) prefer a value as low as
40 MeV, producing the tension [31] summarized in Fig. 1 and in the FLAG 2021 report [32]. These
lattice calculations can be grouped into those applying the Feynman–Hellmann theorem, in which
case the quark-mass derivative of the nucleon mass needs to be controlled very accurately, and via
the direct calculation of the three-point function. Reference [1] provided lattice evidence that the
mismatch between the direct method and phenomenology can be explained by larger-than-expected
multihadron excited-state contamination (ESC). Motivation for such ESC was also presented using
chiral perturbation theory (𝜒PT). Here, after a short review of the lattice-immanent arguments
given in Sec. 2, we extend the 𝜒PT calculation of ESC for the Δ-less case presented in Ref. [1] and
reviewed in Sec. 3 to include the Δ(1232) as an explicit degree of freedom in Sec. 4. The change
on including the Δ is small and does not change the conclusions, which are summarized in Sec. 5.

2. Lattice data

The lattice calculation presented in Ref. [1] constructed Euclidean correlation functions us-
ing Wilson-clover fermions on six 2+1+1-flavor ensembles generated using the highly improved
staggered quark action [33] by the MILC collaboration [34]. These ensembles include data at
𝑀𝜋 ≈ 315, 230, and 138 MeV. To obtain the flavor-diagonal charges 𝑔𝑞

𝑆
, both connected and

disconnected diagrams were calculated using the methodology presented in Refs. [35, 36]. Simul-
taneous fits to the zero momentum nucleon two-point, 𝐶2pt, and three-point, 𝐶3pt, functions were
made using their spectral decomposition

𝐶2pt(𝜏; k) =
3∑︁
𝑖=0

|A𝑖 (k) |2𝑒−𝑀𝑖 𝜏 ,

𝐶
3pt
S (𝜏; 𝑡) =

2∑︁
𝑖, 𝑗=0

A𝑖A∗
𝑗 〈𝑖 |S| 𝑗〉𝑒−𝑀𝑖 𝑡−𝑀 𝑗 (𝜏−𝑡) , (1)

keeping four and three states, respectively. Here, 𝜏 denotes the source–sink separation and 𝑡 the
time of the operator insertion, while A𝑖 are the amplitudes for the creation or annihilation of states
by the nucleon interpolating operator.

The important observation was that current lattice data are not precise enough to resolve the
excited-state masses 𝑀1 and 𝑀2. Fits using two strategies, {4, 3∗} (standard fit, wide priors on
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Figure 1: Results for 𝜎𝜋𝑁 = 𝑚𝑢𝑑𝑔
𝑢+𝑑
𝑆

from 2+1- and 2+1+1-flavor lattice calculations. The BMW 20 result
from 1+1+1+1-flavor lattices is listed along with 2+1+1-flavor calculations for brevity: the difference is
expected to be insignificant. Calculations in the direct approach are indicated by squares and the Feynman–
Hellmann method by triangles. The references from which lattice results have been taken are: JLQCD 18 [27],
𝜒QCD 15A [26], BMW 15 [25], ETM 14A [30], ETM 19 [28], and BMW 20 [29]. Phenomenological
determinations from 𝜋𝑁 scattering data (blue filled circles) are from Gasser 91 [15], Pavan 02 [16], Alarcon
11 [22], Hoferichter 15 [23], and Ruiz de Elvira 17 [24]. Figure reproduced from Ref. [1].

the 𝑀𝑖>0) and {4𝑁 𝜋 , 3∗} (excited-state fit, motivated by 𝜒PT, with narrow prior for 𝑀1 centered
around the noninteracting energy of the almost-degenerate lowest positive-parity multihadron states,
𝑁 (1)𝜋(−1) or 𝑁 (0)𝜋(0)𝜋(0)) gave similarly good fits, but vastly different results for 𝜎𝜋𝑁 . While
the standard fit reproduces values around 40 MeV, imposing multihadron ESC as in the {4𝑁 𝜋 , 3∗}
fit gave ≈ 60 MeV, thus removing the tension with the phenomenological value. The calculation
needs validation, e.g., the conclusion is mainly driven by the single physical pion mass ensemble,
however, it was supported by an analysis of ESC in 𝜒PT, as we will delineate in the following.

3. Excited states in chiral perturbation theory

ESC has been studied before using 𝜒PT methods [37–39]. Given the subtle chiral expansion
of 𝜎𝜋𝑁 , with chiral loops only suppressed by a single order compared to the tree-level contribution
and even subleading loops enhanced due to the presence of the Δ(1232) as reflected by large values
of the corresponding low-energy constants (LECs) 𝑐𝑖 , we carried out a full next-to-next-to-leading-
order (N2LO) analysis, including the diagrams shown in Fig. 2. Expressed in terms of ratios of
correlation functions R𝑆 (𝜏, 𝑡), which for 𝑡, 𝜏 → ∞ yield 𝜎𝜋𝑁 , we find

R (1) (𝜏, 𝑡) =
3𝑔2

𝐴
𝑀2

𝜋

8𝐹2
𝜋𝐿

3

∑︁
k

k2

𝐸4
𝜋

[
1 − 𝑒−𝐸𝑁 𝜋 𝑡 − 𝑒−𝐸𝑁 𝜋 𝑡𝐵 + 1

2
𝑒−𝐸𝑁 𝜋 𝜏 + 1

4
𝑒−2𝐸𝜋 𝑡 + 1

4
𝑒−2𝐸𝜋 𝑡𝐵

]
− 3𝑀2

𝜋

32𝐹2
𝜋

1
𝐿3

∑︁
k

1
𝐸2
𝜋

(
𝑒−2𝐸𝜋 𝑡 + 𝑒−2𝐸𝜋 𝑡𝐵

)
,
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Figure 2: Corrections to the scalar charge in 𝜒PT. Empty and full squares denote, respectively, insertions of
the LO and NLO expansion of the source fields N and N̄ . Plain, dashed, and wavy lines denote, nucleons,
pions, and an insertion of the scalar source. Dots and circled dots denote LO and NLO vertices in the
chiral Lagrangian. Diagrams (ℎ2) and (𝑖2) are representative of N2LO corrections arising from the chiral
expansion of N , which only produces negligible N2LO recoil corrections. The diagrams in the last row show
the corrections induced by the Δ baryon, at NLO (diagram (𝑎3)) and N2LO (diagrams (𝑎4) to (𝑒4)).

R (2)
𝑐𝑖 (𝜏, 𝑡) = −3𝑀2

𝜋

4𝐹2
𝜋

1
𝐿3

∑︁
k

1
𝐸3
𝜋

(
(𝑐2 + 2𝑐3)𝐸2

𝜋 + (2𝑐1 − 𝑐3)𝑀2
𝜋

) [
1 − 1

2
𝑒−2𝐸𝜋 𝑡 − 1

2
𝑒−2𝐸𝜋 𝑡𝐵

]
+ 3𝑀2

𝜋

𝐹2
𝜋

1
𝐿3

∑︁
k

1
𝐸𝜋

𝑐1, (2)

for the next-to-leading-order (NLO) result R (1) and the by far most sizable N2LO correction R (2)
𝑐𝑖

involving the LECs 𝑐𝑖 . The notation for the energies that appear in the sum over discrete momenta
k = 2𝜋n/𝐿 is 𝐸𝜋 =

√︁
k2 + 𝑀2

𝜋 , 𝐸𝑁 =

√︃
𝑀2

𝑁
+ k2 − 𝑀𝑁 , 𝐸𝑁 𝜋 = 𝐸𝜋 + �̃�𝑁 , 𝑀𝑁 and 𝑀𝜋 are the

full nucleon and pion mass at the corresponding quark mass in the lattice simulation, and the time
difference 𝜏 − 𝑡 is denoted by 𝑡𝐵. Note that 𝐸𝑁 𝜋 subsumes some of the N2LO recoil corrections.
For the remaining contributions as well as finite-volume corrections, evaluated as the difference of
the ground-state contribution in Eq. (2) to the continuum result [40], we refer to Ref. [1].

Using the values for the 𝑐𝑖 from Refs. [41, 42], we find that both contributions in Eq. (2)
produce large, negative corrections, that make 𝜎𝜋𝑁 too small if these ESC are not taken into
account. Depending on the details of the lattice ensemble in question, we find that NLO and N2LO
contributions can each generate up to −10 MeV at 𝑡 = 𝜏/2 ∼ (0.5–0.7)fm. The combined effect is
to reduce the ≈ 60 MeV value on the physical mass ensemble to ≈ 40 MeV. Previous calculations
using the direct method did not include these multihadron states in their analysis [32], thus creating
the tension between direct lattice calculations of 𝜎𝜋𝑁 and phenomenology. A similar argument
about the relevance of these multihadron ESC also applies to the Feynman–Hellmann method.
A standard worry, however, in such 𝜒PT analyses is that the results need to be applied at scales
at which the convergence of the heavy-baryon expansion is not guaranteed. Here we extend the
analysis by considering the effect of including the Δ(1232) as an explicit degree of freedom to
gauge the stability of the chiral expansion. These new results are presented in the next section.
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4. Including the 𝚫(1232) resonance as explicit degree of freedom

The first contribution from the Δ(1232) arises at NLO and is shown in diagram (𝑎3) in Fig. 2.
We find

R (1)
Δ

(𝜏, 𝑡) =
ℎ2
𝐴
𝑀2

𝜋

6𝐹2
𝜋

(
1 − 𝜖

3

) 1
𝐿3

∑︁
k

k2

𝐸3
𝜋 (𝐸𝜋 + Δ)2

{
2(2𝐸𝜋 + Δ) − (3𝐸𝜋 + Δ)

(
𝑒−2𝐸𝜋 𝑡 + 𝑒−2𝐸𝜋 𝑡𝐵

)
+ 2𝐸𝜋𝑒

−(𝐸𝜋+Δ) (𝑡+𝑡𝐵) + 4𝐸2
𝜋

(
𝑒−𝐸𝜋 𝑡

𝑒−𝐸𝜋 𝑡 − 𝑒−Δ𝑡
𝐸𝜋 − Δ

+ 𝑒−𝐸𝜋 𝑡𝐵
𝑒−𝐸𝜋 𝑡𝐵 − 𝑒−Δ𝑡𝐵

𝐸𝜋 − Δ

)}
, (3)

written in a form that makes the cancellation of the singularities at 𝐸𝜋 = Δ = 𝑀Δ − 𝑀𝑁 apparent.
At NLO, the Δ–nucleon mass splitting in Eq. (3) should be interpreted strictly in the chiral limit,
Δ = Δ(0) = 𝑀

(0)
Δ

− 𝑀 (0)
𝑁

. Here 𝜖 = (4 − 𝑑)/2 is the regulator in dimensional regularization, as
needed to reproduce the continuum result from Eq. (3), and ℎ𝐴 denotes the 𝜋𝑁Δ coupling in the
conventions of Ref. [43]. The finite-volume corrections can again be obtained by comparing the
ground-state contribution to the continuum, i.e., momentum sums versus integrals, leading to

Δ
(1) ,Δ
𝐿

𝜎𝜋𝑁 =
ℎ2
𝐴
𝑀2

𝜋

6𝜋2𝐹2
𝜋

∑︁
n≠0

∫ ∞

0
𝑑_

[
3𝐾0(𝐿

√︁
𝛽 |n|) −

√︁
𝛽𝐿 |n|𝐾1(𝐿

√︁
𝛽 |n|)

]
, (4)

with 𝛽 = _2 + 2_Δ + 𝑀2
𝜋 and Bessel functions 𝐾0, 𝐾1.

N2LO corrections arise from recoil corrections to the Δ propagator and to the Δ–nucleon
vertices, as well as from the LEC 𝑐Δ1 . The latter contributes in two ways, by mediating the coupling
of the scalar charge to the Δ baryon and by providing a quark-mass dependent correction to the Δ

mass. Diagrams (𝑑4) and (𝑒4) can be absorbed by shifting

Δ → �̃�Δ ≡
√︂(

𝑀
(0)
𝑁

+ Δ(0) − 4𝑀2
𝜋𝑐

Δ
1

)2
+ k2 −

(
𝑀

(0)
𝑁

− 4𝑀2
𝜋𝑐1

)
= Δ(0) − 4𝑀2

𝜋 (𝑐Δ1 − 𝑐1) +
k2

2𝑀 (0)
𝑁

+ O
(
𝑀−2

𝑁

)
, (5)

in the NLO contribution (3). 𝑐1 and 𝑐Δ1 quantify pure explicit-symmetry-breaking terms, in such a
way that the nucleon and Δ becoming degenerate in the large-𝑁𝑐 limit strongly suggesting 𝑐1 = 𝑐Δ1
up to 1/𝑁𝑐 corrections [43]. Effectively, we capture these corrections by using the physical values
of the nucleon and Δ masses in �̃�Δ and in Eq. (3).

The remaining N2LO corrections are given by diagrams (𝑎4), (𝑏4), and (𝑐4) and by analogous
corrections to the two-point function, which yield

R (2)
Δ

(𝜏, 𝑡) =
2ℎ2

𝐴
𝑀2

𝜋

3𝐹2
𝜋

(
1 − 𝜖

3

) ( 1
𝑀𝑁

− 4
(
𝑐Δ1 − 𝑐1

))
× 1
𝐿3

∑︁
k

k2

𝐸𝜋 (𝐸𝜋 + Δ)2

[
1 − 𝑒−(𝐸𝜋+Δ)𝑡 − 𝑒−(𝐸𝜋+Δ)𝑡𝐵 + 𝑒−(𝐸𝜋+Δ) (𝑡+𝑡𝐵)

]
+

2ℎ2
𝐴
𝑀2

𝜋

3𝐹2
𝜋𝑀𝑁

(
1 − 𝜖

3

) 1
𝐿3

∑︁
k

1
𝐸𝜋

[
1 − 1

2
𝑒−2𝐸𝜋 𝑡 − 1

2
𝑒−2𝐸𝜋 𝑡𝐵

]
. (6)
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Figure 3: (Left) ESC from different truncations to the isoscalar scalar charge 𝑔𝑆 in 𝜒PT. (Right) Estimates
for 𝑅𝑆 (𝜏, 𝑡) from the N2LO analysis for the a09m130 ensemble. In both cases, the dashed bands indicate
the outcome of the full N2LO analysis including the Δ(1232), in comparison to the Δ-less results using solid
lines. The figure generalizes Fig. 6 in Ref. [1].

To obtain these expressions, we have chosen a renormalization scheme that reproduces the contin-
uum results from Ref. [44], ensuring consistency with the LECs from Ref. [43]. The last line of
Eq. (6) leads to a shift in the couplings 𝑐2 + 2𝑐3 in Eq. (2) by Δ(𝑐2 + 2𝑐3) = −8ℎ2

𝐴
/(9𝑀𝑁 ). The

first line contains a recoil correction and a correction proportional to 𝑐Δ1 − 𝑐1. As discussed above,
the latter is expected to vanish in the large-𝑁𝑐 limit.

Equation (3) is evaluated numerically with the resummed shift (5) and the physical value of
the Δ–nucleon mass splitting. Further, we vary 𝑐1 − 𝑐Δ1 between ±|𝑐1 |/𝑁𝑐 as an estimate of the
corresponding uncertainty, leading to the bands in Fig. 3 for the full N2LO analysis including the
Δ(1232) baryon. For comparison, the results from the Δ-less calculation are shown by solid lines,
both for different truncations in the chiral order and sum over momenta k (left) and source–sink
separations (right). In particular, the figure illustrates that the corrections beyond the N2LO Δ-less
results are small, much smaller than the shift between NLO and N2LO results. These findings
indicate that the chiral expansion is reasonably stable, with the main effects indeed captured by the
leading-loop contributions and the Δ-enhanced corrections from the 𝑐𝑖 that were already included
in Ref. [1].

5. Conclusions

We have summarized the main arguments from Ref. [1] that provide a resolution of the tension
between phenomenological determinations of𝜎𝜋𝑁 and direct lattice calculations. We demonstrated
the impact of ESC in both the lattice calculation and in 𝜒PT up to N2LO. Here we have extended
the 𝜒PT calculation to include the Δ(1232) resonance as an explicit degree of freedom to assess
the stability of the chiral expansion, and find that for 𝜎𝜋𝑁 the impact is remarkably small, thereby
corroborating the conclusions from the Δ-less heavy-baryon analysis presented in Ref. [1].
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