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1. Introduction

Chiral perturbation theory (ChPT) is an effective field theory of quantum chromodynamics, which
is the quantum field theory describing the strong force. The chiral Lagrangian is written in terms
of the @/Λ expansion, where @ ∼ "c ∼ | ®? | is the soft scale of the order of the pion mass or the
small external momentum and Λ ∼ 1 GeV is the hard scale of the order of the not-included physics
(see [1] for an extensive introduction into ChPT). For baryon chiral perturbation theory (BChPT),
different renormalization methods are available to solve the power counting (PC) problem, for
instance heavy baryon chiral perturbation theory (HBChPT) [2], the infrared scheme (IR) [3], and
the extended-on-mass-shell renormalization (EOMS) [4, 5].

While having no PC violation per construction, HBChPT is not a manifestly Lorentz covariant
theory and is known to have convergence problems. IR is covariant, but leads to the appearance
of unphysical cuts. Finally, EOMS preserves not only Lorentz covariance, but also the analytic
structure of the Green’s functions. For a review of BChPT see [6].

This work focuses on the two-loop calculation of the nucleon mass up to chiral order six
applying EOMS. An analysis of the chiral-order-five contributions was done in HBChPT [7], with
the result that the"5

c contributions can be absorbed in the physical pion-nucleon coupling constant.
A complete calculation up to chiral order six was already done in the IR scheme [8], working with
the same Lagrangian and considering (nearly) the same diagrams as we do in the following.

This work is organized as follows: In section 2 we give some basics about the nucleon mass
and self-energy in SU(2) chiral perturbation theory. In section 3 the reduction of the integrals is ex-
plained, while the solution of the remaining integrals is discussed in section 4. The renormalization
is outlined in section 5. Finally, a summary and an outlook are given in section 6.

2. Nucleon mass in SU(2) chiral perturbation theory

In this section we introduce the SU(2) chiral Lagrangian and provide the basics for the calculation
of the physical nucleon mass.

2.1 The SU(2) chiral Lagrangian

The SU(2) chiral Lagrangian L = L (2)c + L (4)c + L (1)c# + L
(2)
c#
+ L (3)

c#
+ L (4)

c#
+ . . . is built of a

nucleon field Ψ and three pseudoscalar pion fields ®c and is listed up to order O(@4) in [9]. The
lowest-order parts (including the free nucleon and pion parts) can be sketched as

L (2)c = −1
2
"2 ®c · ®c + 1

2
m` ®c · m` ®c +

8U − 1
8�2 "2 ( ®c · ®c)2 + · · · + O(c6) , (1)

L (4)c = − (;3 + ;4)"
4

�2 ( ®c · ®c) + · · · + O(c3) , (2)

L (1)
c#

= −Ψ̄<Ψ + 8Ψ̄/mΨ + 6�
2�
Ψ̄W5 ®g · /m ®cΨ + · · · + O(c5) . (3)

Here, the pion mass " is of the order of the soft scale, and the nucleon mass < is of the order of
the hard scale. The Lagrangian includes the low energy constants �, 6�, ;8 as well as 28 ∈ L (2)c# ,
38 ∈ L (3)c# , 48 ∈ L

(4)
c#

.1

1Where U is an arbitrary constant that cancels in the calculation of observables.
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For quantum field theories, it is customary to calculate (physical) quantities in terms of
Feynman diagrams, where each of these diagrams corresponds to a mathematical expression, de-
termined by the Feynman rules (computed from the Lagrangian). The power counting of ChPT
assigns a chiral order (in terms of the soft scale over the hard scale) to each of the diagrams and all
integrals.

Because the order of a diagram increases by increasing the number of loops, no three-loop
diagram has to be taken into account for a chiral-order-six calculation.

2.2 The nucleon mass and self-energy

The physical nucleon mass <# is defined as the pole of the nucleon propagator via[
?2 − (< + Σ(?, <))2 + 8Y

]
?2=<2

#

= 0 ⇒ <# = < + Σ(<# , <), (4)

where the self energy Σ is diagramatically defined as sum of all one-particle irreducible (1PI)
diagrams, i.e., diagrams that cannot be divided into two by cutting one internal line.2

−8Σ := .1PI (5)

The self energy consists of a (tree-level) contact part and a loop part Σ = Σ2 + Σ;. The contact part
can be easily calculated to be3

Σ2 = −421"
2 − 2 (4115 + 4116 + 8438) "4 − 6̂1"

6 . (6)

To simplify the calculations, we shift the nucleon mass in the self-energy < → < + Σ2 = <̃, such
that the physical nucleon mass is given by

<# = <̃ + Σ; (<# , <̃) , (7)

where Σ; now contains the contributions of the one-loop diagrams with the nucleon contact interac-
tions included in the nucleon propagator (that is now a partly dressed propagator). All contributing
one-loop and two-loop diagrams of Σ; up to chiral order six are given in Fig. 1 and Fig. 2, where
solid and dashed lines denote nucleons and pions respectively and the number in a vertex denotes the
order of the Lagrangian it originates from.4 For each diagram we denote the chiral order (according
to the naive power counting) and the overall factor in terms of 6� and �.

3. Reduction to master integrals

The mathematical expressions of the diagrams are simplified and the (tensor) integrals are reduced
to a small set of master integrals using the Mathematica programTARCER [10] based on Tarasov’s

2All our expressions appearwithDirac spinorsD(?), so thatwith “? = <# ”wemean ?2 = <2
#
and /?D(?) = <# D(?).

3The order six term with constant 6̂1 represents a linear combination of the contact terms from L (6)
c#

.
4Note that Fig. 2d does not appear in [8] as its purely infrared-singular part vanishes up to higher order terms.
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(b) O(@5), 6��−2
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(c) O(@5), 62
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�−4
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(d) O(@4), �−2
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(e) O(@6), �−2
2

4

(f) O(@6), �−4

Figure 1: One-loop diagrams contributing to the nucleon self-energy
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Figure 2: Two-loop diagrams contributing to the nucleon self-energy

reduction algorithm [11, 12]. Our set of master integrals consists of three single integrals ) (1)c =

)
(1)
",0(3; 1, 0), ) (1)

#
= )

(1)
<̃,0(3; 1, 0) and ) (1)

c#
= )

(1)
",<̃
(3; 1, 1) and eight double integrals

)
(2)
I = )

(2)
?,",",0,0,<̃(3; 1, 1, 0, 0, 1) , )

(2)
II = )

(2)
?,",",0,0,<̃(3; 2, 1, 0, 0, 1) ,

)
(2)
III = )

(2)
?,<̃,<̃,0,0,<̃(3; 1, 1, 0, 0, 1) , )

(2)
IV = )

(2)
?,",",0,0,<̃(3; 1, 1, 0, 0, 2) ,

)
(2)
V = )

(2)
?,",0,0,<̃,<̃(3; 1, 0, 0, 1, 1) , )

(2)
VI = )

(2)
?,",",<̃,0,<̃(3; 1, 1, 1, 0, 1) ,

)
(2)
VII = )

(2)
?,",0,<̃,<̃,<̃(3; 1, 0, 1, 1, 1) , )

(2)
VIII = )

(2)
?,",",<̃,<̃,<̃

(3; 1, 1, 1, 1, 1) , (8)
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where we use the following integral definitions:

)
(1)
?,<1,<2 (3;U1, U2) =

∫
d3;
(2c)3

1(
;2 − <2

1 + 8Y
)U1 (
(; + ?)2 − <2

2 + 8Y
)U2

, (9)

)
(2)
?, {<: }5:=1

(3; V1, V2, V3, V4, V5) =
∫

d3;1
(2c)3

∫
d3;2
(2c)3

5∏
9=1

1(
;̃ 2
9
− <2

9
+ 8Y

)V 9
, (10)

;̃1 = ;1, ;̃2 = ;2, ;̃3 = ;1 + ?, ;̃4 = ;2 + ?, ;̃5 = ;1 + ;2 + ? . (11)

The diagrammatic representations of these master integrals are given in Fig. 3 and Fig. 4.

Figure 3: Diagrammatic representation of the single master integrals

Figure 4: Diagrammatic representation of the double master integrals

For example, the reduced diagram Fig. 2e for ?2 = <̃2 is given in terms of master integrals as

−8Σ(2)4 = −
862
�

(
(23 − 3)<̃2 − (3 − 2)"2)

2(33 − 4)�4<̃
() (1)c )2 −

3862
�
<̃

�4 () (1)
#
)2

+
862
�

(
4(23 − 3)<̃2 − (3 − 2)"2)

2(33 − 4)�4<̃
)
(1)
#
)
(1)
c −

3862
�
<̃"2

�4 )
(1)
#
)
(1)
c#
−

3862
�
<̃"2

�4 )
(2)
V

−
862
�

( (
832 − 323 + 30

)
<̃4 +

(
−832 + 333 − 32

)
<̃2"2 −

(
32 − 53 + 6

)
"4)

(3 − 2) (33 − 4)�4<̃
)
(2)
I

+
4862

�
"2 (

<̃2 − "2) (
(43 − 6)<̃2 + (3 − 2)"2)

(3 − 2) (33 − 4)�4<̃
)
(2)
II −

3862
�
<̃"4

�4 )
(2)
VI . (12)

4. Solving the integrals with the strategy of regions

The single and double master integrals are solved using dimensional regularization. In the first
step, the solutions are given as a chiral expansion in 3-dimensional Minkowski space using the
strategy of regions [13].

The idea is to expand the integrand in different regions, where the integration momenta are
either of the order of the soft scale @ or of the order of the hard scale. According to the strategy
of regions, a Taylor series )@ in a small parameter @ of an integral can be given by series of the

5
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integrand in all possible regions. For example, a single integral over ; would be expanded in two
regions: one, where ;2 ∼ "2 ∼ @2, and one, where ;2 ∼ <2 � @2:

)@

[∫
5 (;, @)d;

]
=

∫
)@ [ 5 (;, @)];∼@ d; +

∫
)@ [ 5 (;, @)];�@ d; = ( + ' . (13)

The resulting parts are the infrared-singular part (, which is non-analytic in the soft scale @,5 and
the infrared-regular part, which is analytic in the soft scale @. In the case of a double integral there
are four regions, such that

)@

[∫
5 (;1, ;2, @)d;1d;2

]
=

∫
)@ [ 5 (;1, ;2, @)];1∼@

;2∼@
d;1d;2 +

∫
)@ [ 5 (;1, ;2, @)];1�@

;2�@
d;1d;2

+
(∫

)@ [ 5 (;1, ;2, @)] ;1∼@
;2�@

d;1d;2 +
∫
)@ [ 5 (;1, ;2, @)];1�@

;2∼@
d;1d;2

)
= ( + ' + " , (14)

where " is an additional mixed part (consisting out of two regions). The power-counting-breaking
(PCB) terms stem from " and ', where at least one integration momentum is large.

For practical calculations, in regions with ;8 ∼ @, one can substitute ;a
8
→ "@a

8
(a dimension-

less four-vector multiplied by the pion mass) and collect pion masses to get expressions like

"3−4
∫

d3@1

(2c)3

∫
d3;2
(2c)3

×
{[
@2

1 − 1
]2 [

;22 − "
2] [

@2
1"

2 + 2(;2 + ?) · @1" + ;22 + 2;2 · ? + ?2 − <2]}−1
, (15)

where in the next step one expands the integrand in " and ?2−<2. The solutions for the remaining
integrals are known (in terms of gamma and hypergeometric functions).

For technical and computational reasons, the master integrals were already expanded in the
dimension 3 − 4 before calculating the full expressions of the diagrams. For the expansion, the
Mathematica package HypExp [14] was used. As an example, one obtains for the double master
integral ) (2)VI at leading chiral order (for simplicity we denote the masses as " and <):6

)
(2) ,'
VI = − 1

128c4(3 − 4)2
+ 3

256c4(3 − 4)
+ c

2 − 22
1024c4 + O("

2, (3 − 4)) , (16)

)
(2) ,(
VI = − "2

512c2<2 + O("
3, (3 − 4)) , (17)

)
(2) ,"
VI = − "

128c3(3 − 4)<
−
"

(
ln

(
"
<

)
− 1 + ln(2)

)
128c3<

+ O("2, (3 − 4)) . (18)

Note that the naive PC predicts ) (2)VI to be of chiral order two and that the purely infrared-regular
part and the mixed part give PCB terms. Furthermore, the mixed part includes PCB terms, which
are non-analytic in "2.

Inserting these solutions of the master integrals, we computed all diagrams by means of the
chiral expansion in different regions. For each diagram the purely infrared-singular part corresponds
to the one from the reduced expressions from [8].7

5In the sense that @ has powers in 3, which is assumed to be a complex number.
6Where the renormalization scale is chosen as ` = (4c)−1/2 exp((W� − 1)/2) <.
7Where we assume a typo in [8]: In X<2(3) in formula (108) an additional factor c2 is missing for the dimension

= + 4 integrals.

6
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5. Renormalization

The Lagrangian is given in terms of bare parameters <̃�, "�, ��, 6�
�
, 2�
8
, . . . . Furthermore, the

renormalized nucleon and pion fields appear with /-factors /# and /c . We remind the reader that
our goal is to get an expression for the physical nucleon mass from

<# − <̃� − Σ; (<# , <̃�, {more bare parameters}) = 0 . (19)

5.1 Parameter Shifts

Following the EOMS renormalization from [15], we perform shifts

6�� → 6�� − 2("�)2(23�16 − 3
�
18) , ("

�)2 → ("�)2 −
2;�3 ("

�)4

(��)2
, �� → �� −

;�4 ("
�)2

��
,

(20)

thereby, effectively removing diagrams Fig. 1b, Fig. 1c and Fig. 1f (and the 316, 318, ;3 and ;4
dependence).

5.2 Corrections and the Z-factors

All bare parameters are given as the renormalized ones plus corrections like

<̃� = <̃' + X<̃ = <̃' + ℏX<̃ (1) + ℏ2X<̃ (2) + . . . . (21)

The explicit (first order in ℏ) correction for the nucleon mass reads (following again [15])8

X<̃ (1) =
38(6'

�
)2<̃'

2(�')2
)# +

38(6'
�
)2<̃' ("')2

2(�')2
)div+IRR
c# (?2 = <2

# )

−
32'2

128c2(�')2
("')4 −

8("')2(242'1 − 3(2'2 + 42'3 ))
4(�')2

)div
c , (22)

where only the divergent and infrared-regular parts (of chiral order zero) of the master integrals
are taken. These corrections, as well as the corrections X" , X�, X6�, X28 , X48 and X/# , produce
additional terms in the Lagrangian (counterterms) that remove all divergent and power counting
breaking (PCB) terms of the diagrams.

The Z-factors Ψ� =
√
/#Ψ

' =
√

1 + X/#Ψ' and c�0 =
√
/cc

'
0 =

√
1 + X/cc'0 give the

following additional counterterms stemming from the free and the contact part of the Lagrangian:

?
→

?
→

X/#

=̂ 8X/#

(
/? − <̃'

)
,

@, 0
→

@, 1
→

X/c

=̂ 8X/c

(
@2 −

(
"'

)2
)
X01.

(23)

In diagrams, these terms cancel one of the propagators and effectively give a factor −X/# or −X/c
per nucleon or pion line. In addition, each vertex with one incoming and one outgoing nucleon

8Note that we work with the shifted mass, where <̃ = <' + Σ'2 + X< + XΣ2 . The terms 42'1 ("
')2 and 42'1 X("

2)
are included in the contact self-energy (also including 4X21 ("')2 and higher chiral order terms).

7
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line gives a contribution X/# or X/c/2 per pion propagator. Therefore, the correction to the pion
Z-factor does not contribute to our calculation, while the nucleon Z-factor in total contributes as
factor X/# times the one-loop diagrams.

The diagrams involving counterterms are given in Fig. 5, Fig. 6 and Fig. 7, and in general
contribute at different overall factors in 6� and �.

X<̃

(a) �−2, 62
�
�−2

X/#

(b) 64
�
�−4

X/# X<̃

(c) 62
�
�−4, 64

�
�−4

Figure 5: Tree-level counterterm diagrams contributing to the nucleon self-energy

1 1
X<̃

(a) 62
�
�−4, 64

�
�−4

1 1
X"

(b) 62
�
�−4

1 1
X/#

(c) 62
�
�−4, 64

�
�−4

11
X/#

(d) 62
�
�−4, 64

�
�−4

11
X6�

(e) 6��−2, 62
�
�−4, 64

�
�−4

11
X�

(f) 62
�
�−4

Figure 6: One-loop counterterm diagrams corresponding to Fig. 1a

2

X"

(a) �−4

2
X�

(b) �−4

2
X28

(c) �−4, 62
�
�−4, 64

�
�−4

2
X/#

(d) 62
�
�−4

4
X48

(e) �−4, 62
�
�−4, 64

�
�−4

Figure 7: One-loop counterterm diagrams corresponding to Fig. 1d and Fig. 1e

5.3 Renormalized result in terms of the chiral expansion

As a first step, we use <̃� = <# + X<̃, which yields for Eq. (19): Σ; + X<̃ = 0. This choice allows
an on-shell calculation of all diagrams due to (<̃')2 = ?2.

Adding the expressions for the counterterm diagrams to the expressions for Fig. 1 and Fig. 2,
the divergences and all analytic PCB terms from the purely infrared-regular parts as well as all non-
analytic PCB terms stemming from the mixed parts are removed. The only PCB terms from the
one-loop diagrams left are from Fig. 1e and they are proportional to 48"6 and added to X< (1)

#
. The

remaining analytic PCB parts from the two-loop diagrams are included in X< (2)
#

. The renormalized
self-energy is given by (with all constants being renormalized ones)

Σ; + X<̃ =
1
�2 C0,2 +

62
�

�2 C2,2 +
1
�4 C0,4 +

62
�

�4 C2,4 +
64
�

�4 C4,4 . (24)

8
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1
�2 C0,2 =

321"
4

4c2�2 ln
(
"

<#

)
− 322"

4

32c2�2 ln
(
"

<#

)
− 323"

4

8c2�2 ln
(
"

<#

)
+ "6

32c2�2

{
sum of 48 − 12 (another sum of 48) ln

(
"

<#

) }
(25)

62
�

�2 C2,2 = −
362
�
"3

32c�2 +
362
�
"4

32c2�2<#

(
1 − ln

(
"

<#

))
+

362
�
"5

256c�2<2
#

−
62
�
"6

128c2�2<3
#

(26)

1
�4 C0,4 = −

"6

12288c4�4

{
− 144(221 − 23) ln

(
"

<#

)
− 144(621 − 22 − 423) ln2

(
"

<#

)
− 24

(
6 + c2

)
21 + 1822 + 3c222 + 7223 + 12c223 + 3224 + 60c224 −

30
<#

}
(27)

62
�

�4 C2,4 = −
962
�
"5 ln

(
"
<#

)
1024c3�4 −

62
�
"6

64c2�4<#
+

962
�
"6

256c4�4<#
−

362
�
"6 ln2

(
"
<#

)
256c4�4<#

−
562
�
"6 ln

(
"
<#

)
1024c4�4<#

+
62
�
"6

18432c4�4

{
334821 − 43822 − 39823 + 214024

+ 3c2(4221 + 522 + 11923 − 22624) + 486(821 − 22 − 423) ln2
(
"

<#

) }
(28)

64
�

�4 C4,4 = −
64
�
"5

128c3�4 +
2164

�
"5 ln

(
"
<#

)
1024c3�4

−
64
�
"6

(
239

(
8 + 3c2) + 864 ln

(
"
<#

)
+ 2592 ln2

(
"
<#

))
98304c4�4<#

(29)

As a next step, we use <̃� = <0 +Σ'2 + X<̃, which yields for Eq. (19): <# = <0 +Σ'2 + X<̃ +Σ; = 0.
Expressing the external momentum in the diagrams as√

?2 = <# = <0 + Σ'2 −
362
�
"3

32c�2 + O("
4) , (30)

we get additional terms from <# − <̃' ∼ O("3). Using the same corrections as before, additional
terms from the purely infrared-singular part that are non-analytic in "2 only appear two chiral
orders higher than the order of the diagrams. Diagrams contributing additional non-analytic terms
are the one-loop diagram Fig. 1a and the tree-level counterterm diagram Fig. 5b, the expression of
which includes a factor /? − <̃' (see Eq. (23)).

6. Summary and outlook

We have successfully reduced the mathematical expressions of all two-loop diagrams contributing
to the nucleon mass up to and including chiral order six and calculated all diagrams by means of
the chiral expansion using the strategy of regions. We were able to show that all power-counting-
breaking terms (as well as all divergent terms) can be removed using the EOMS renormalization.
We also presented the renormalized self-energy.

In the next step, we will analyze the additional terms from the off-shell case in more detail.
The final expanded result should then be compared to the existing HB and the IR results.

9



P
o
S
(
C
D
2
0
2
1
)
0
7
4

Two-loop calculation of the nucleon self-energy Nils D. Conrad

Clearly, our final goal is to calculate the nucleon self-energy without relying on the chiral
(i.e. 1/<) expansions. Because products of single integrals appear in the reduced expressions of
the two-loop diagrams, we need the full solution for the single pion-nucleon integral up to and
including the linear order in 3 − 4. For the double master integrals a separation of analytic and
finite parts has to be computed and the finite parts have to be calculated numerically. This work is
in progress.
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