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A long-standing discrepancy in the soft photon bremsstrahlung has attracted a renewed attention
in view of the proposed measurements with a future upgrade of the ALICE detector in the
upcoming runs of the LHC. We discuss the possibility to implement techniques that have been
recently developed for soft gluon resummation at Next-to-Leading-Power (NLP) to the soft photon
spectrum. Specifically, we discuss two different corrections to the formula that has been used so
far to compare with data.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:domenico.bonocore@tum.de
mailto:anna.kulesza@uni-muenster.de
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
1
1
2
8

Next-to-leading power corrections for soft photon bremsstrahlung Domenico Bonocore

1. An experimental conundrum

Theoretical descriptions of soft photon emissions typically rely on the Leading Power (LP)
eikonal approximation, where the photon momentum : → 0. In this limit, the bremsstrahlung
spectrum in a 2→ = process is given by [1–3]

3fLP
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ª®¬ 3f� (?1, . . . , ?=) , (1)

where l: is the photon energy, [8 = ±1 is equal (opposite) to the sign of the charge of the 8-th
particle in the final (initial) state, while 3f� denotes the non-radiative differential cross-section
depending on the hard momenta ?8 . The spectrum is governed by the eikonal factor in bracket,
which is universal, insensitive to spin and recoil of the hard emitter and in agreement with classical
power spectrum 3f

3l:
∼ 1
l:

.
However, the LP formula in eq. (1) disagrees with data when final state hadrons are present

[4–6]. In the light of planned future measurements with the ALICE detector [7, 8], it is therefore
of primary importance to have reliable theoretical predictions and investigate corrections to eq. (1).
Building on recent progress in threshold resummation (where the soft boson is an undetected gluon)
[9–11], we study the impact of next-to-leading power (NLP) corrections to the strict : → 0 limit in
the case of a detected photon. Specifically, we consider two sets of NLP corrections to eq. (1).

2. NLP photons via LBK theorem

The first kind of corrections, first studied by Low, Burnett and Kroll (LBK) [1, 2], is valid
only at the tree-level and consists in simply Taylor expanding the soft photon momentum at NLP. In
the modern language of next-to-soft theorems [12], the result of this expansion yields the radiative
amplitude A=+1 in terms of the non-radiative amplitude A= and reads

A=+1(:, ?1, . . . , ?=) = (S!% + S#!%) A= (?1, . . . , ?=) ,

S!% =

=∑
8=1

[8
n∗(:) · ?8
?8 · :

, S#!% =

=∑
8=1

[8
n∗` (:):a ((`a + !`a)

?8 · :
. (2)

Note the coupling with the spin generator (`a and the orbital angular momentum generator !`a .
Hence, NLP soft emissions are sensitive to the spin and the recoil of the hard emitter.

Although the theorems in eq. (2) can be applied to a generic scattering process, the non-
radiative amplitude A= depends on momenta that violate momentum conservation at NLP. This
feature becomes problematic for numerical implementations, where the momentum : is always
finite. A possibility to bypass this problem has been proposed in [13] where, building on [14], the
LBK theorem has been rewritten in terms of a shifted kinematics. Squaring and summing over
polarizations, it reads in this formulation

|A=+1(?1, . . . , ?=, :) |2 =

(
=∑

8, 9=1
−[8[ 9

?8 · ? 9
?8 · : ? 9 · :

)
|A= (?1 + X?1, . . . , ?= + X?=) |2 , (3)
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where the shifts X?8 are defined as
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and

�
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= 6`a −

?
`

8
:a

?8 · :
+ O(:) . (5)

Note that the eikonal factor in eq. (3) is the same as in eq. (1) and therefore eq. (3) can be
analogously implemented in the bremsstrahlung cross section, thus providing a correction of order
(l:)0 to eq. (1).

3. NLP photons with QCD loop corrections

The second type of corrections is due to the fact thatNLP soft theorems receive loop corrections.
Virtual collinear effects are captured by radiative jet functions �` [15]. In particular, for a process
with a single quark-antiquark pair in the massless limit (such as 4+4− → @@̄W), the leading QCD
correction to the LBK contribution comes from the quark radiative jet, which in dimensional
regularization (with 3 = 4 − 2n , ¯̀ the MS scale and =` a light-like reference vector) reads [16]

�` (1) (?, =, :) =
(

¯̀2

2? · :

) n [ (
2
n
+ 4 + 8n

) (
= · :
? · :

?`

? · = −
=`

? · =

)
− (1 + 2n) 8:U(

U`

? · :

+
(
1
n
− 1

2
− 3n

)
:`

? · : + (1 + 3n)
(
W`/=
? · = −

?`

? · :
/:/=
? · =

) ]
+ O(n2, :) . (6)

Correspondingly, the next-to-soft theorem of eq. (3) receives a logarithmic correction, given by(∑
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with @8 the electric charge of the quark. The soft photon bremsstrahlung at O(UB) then becomes

3f
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where 3fNLP-tree
33:

is obtained from |A=+1 |2 in eq. (3) and
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This result provides a correction of order UB log
(

¯̀2

2?8 ·:

)
to eq. (1), and as such it is particularly

enhanced for small l: and small :C .
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