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The Higgs boson trilinear and quartic self-couplings are directly related to the shape of the
Higgs potential; measuring them with precision is extremely important, as they provide invaluable
information on the electroweak symmetry breaking and the electroweak phase transition. In this
paper, we perform a detailed analysis of double Higgs boson production, through the gluon-gluon
fusion process, in the most promising decay channels 𝑏𝑏̄𝛾𝛾, 𝑏𝑏̄𝜏𝜏, and 𝑏𝑏̄𝑏𝑏̄ for several future
colliders: the HL-LHC at 14 TeV and the FCC-hh at 100 TeV, assuming respectively 3 𝑎𝑏−1 and 30
𝑎𝑏−1 of integrated luminosity. In the HL-LHC scenario, we expect an upper limit on the di-Higgs
cross section production of 0.76 × 𝜎SM at 95% confidence level, corresponding to a significance
of 2.8 𝜎. In the FCC-hh scenario, depending on the assumed detector performance and systematic
uncertainties, we expect that the Higgs self-coupling will be measured with a precision in the
range 4.8-8.5% at 95% confidence level.
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1. Physics Motivation

The study of the Higgs boson pair production (HH) is one of the main goals of the scientific
program at future colliders. It offers a direct experimental access to the Higgs boson trilinear self
coupling and hence to the structure of the scalar potential itself. The di-Higgs production has a tiny
cross section of 37 fb at 14 TeV in SM, with NNLO corrections [1][2], making its search arduous.

In order to access experimentally the HH phase space, it is essential to find a trade-off between
high branching ratio and signal purity. For this study, three different final states are considered:
𝑏𝑏̄𝛾𝛾, 𝑏𝑏̄𝜏𝜏, 𝑏𝑏̄𝑏𝑏̄. The 𝑏𝑏̄𝛾𝛾 final state has the highest purity, but suffers from a very low
branching ratio; 𝑏𝑏̄𝜏𝜏 has the second highest branching ratio, is easy to trigger on due to the
presence of leptons, and has a relatively low background; 𝑏𝑏̄𝑏𝑏̄ has the highest branching ratio but
suffers from high QCD- and tt-induced background.

2. Event Generation, Detector Simulation and Data Analysis

The signal and background processes in proton-proton (pp) collisions at 14 and 100 TeV are
modelled using Monte Carlo (MC) event generators; the hadronisation and fragmentation effects
are handled by using the PYTHIA8 [3] program. Signal processes from gluon-gluon fusion (ggF)
HH production are simulated at next-to-leading order (NLO) with POWHEG 2.0 [4–6]. All the
simulated samples are processed with the DELPHES [9] fast simulation program to model the
detector response and performances [10][11]. Simulation accounts also for pileup contributions by
overlaying an average of 200 (1000) minimum bias interaction events simulated with PYTHIA8
at center-of-mass energies of 14 (100) TeV. The data analysis for the three aforementioned double
Higgs decay channels has been performed by using the Bamboo framework [12].

3. Results

The results obtained in each of the three decay channels, described in [13], are combined
together assuming the SM branching fractions for HH decays to the studied final states. The
integrated luminosity considered is: 3 𝑎𝑏−1 for HL-LHC at 14 TeV and 30 𝑎𝑏−1 for FCC-hh at 100
TeV.

At 14 TeV, a scenario with only statistical uncertainties (stat) and one statistical plus systematic
(stat + sys) [13] are explored. At 100 TeV, a statistical only, a 14 TeV like stat+sys (scenario 1)
and an optimistic scenario (scenario 0) are explored. The scenario 0 supposes 0.5% uncertainty
on luminosity measurement, 1%-2% on photon/b-tagging/lepton/tau efficiency, 1% on theoretical
uncertainties. The analyses of the three decay channels are designed to be orthogonal thanks to
the mutually exclusive object selection used for each channel. Different machine learning methods
are used to improve the sensitivity. Systematic uncertainties on the theoretical assumptions or
associated to the same object, such as b tagging efficiency, are treated as correlated, while all the
others are left uncorrelated.

The upper limit on the signal strength for the HH combination at 14 TeV is 0.76 corresponding
to a significance of 2.80. Results as a function of 𝜅𝜆 are shown in Figure 2. Prospects for the
measurement of the 𝜅𝜆 at 14 TeV are shown for each channel and for the combination in Figure 2.
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The expected confidence interval of this coupling is expected to be in the ranges [0.46, 1.73] at 68%
CL and [-0.02, 3.05] at 95% CL.
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Figure 1: (Left) Expected upper limit at the 95% CL on the HH production cross section as a function of 𝜅𝜆
with 1𝜎 and 2𝜎 bands. (Right) Expected likelihood scan as a function of 𝜅𝜆.

At 100 TeV, the combined expected precision on the signal strength at 30 𝑎𝑏−1 is 2-3.6% at
68% and 4-8% at 95%, depending on the systematic scenario considered [13]. The precision on
the measurement of the Higgs self coupling assuming the presence of a HH signal with the same
properties of the SM, is 2.4-3.9% at 68% and 4.8-8.5% at 95% (Figure 2). The precision on the
signal strength and on the self coupling is also measured as a function of the luminosity, as reported
in Figure 2.
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Figure 2: (Top-Left) Precision on the determination of the signal strength (Top-Right) Precision on the
determination of the 𝜅𝜆. (Bottom-Left) Precision on the determination of the signal strength as a function of
the luminosity at 68% CL (Bottom-Right) Precision on the determination of the signal strength as a function
of the luminosity at 95% CL
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