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The SN1987A core-collapse supernova was the first Extragalactic transient source observed
through neutrinos. The detection of the 25 associated neutrinos by the Super-Kamiokande,
IMB and Baksan experiments marked the beginning of neutrino astronomy. Since then, neu-
trino telescopes have not been able to make another observation due to the remoteness and low
occurrence of the sources. It is therefore essential to optimise the detection channel of sensi-
tive detectors in case of an upcoming Galactic core-collapse supernova. Neutrino observations
would, in particular, provide first-hand information about the core-collapse mechanism as well
as the behaviour of particles in dense environments. In this contribution, we discuss how the
innovative design of the optical modules in the KM3NeT neutrino experiment would allow for
the observation of supernova neutrinos. The sensitivity of KM3NeT to Galactic supernovae is
presented and its associated online alert system for multi-messenger studies is described. Finally,
the ability of KM3NeT to infer the supernova evolution from the time profile of the associated
neutrino emission is discussed.
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1. Introduction

The historical detection of 25 neutrinos from the SN1987A core-collapse supernova (CCSN) in
the underground facilities of the Kamiokande, IMB and Baksan laboratories led to results concerning
the properties of neutrinos [1]. It was expected that these observations would also shed light on the
heavily debated explosion mechanism of 10-M⊙ stars [1, 2]. A prompt hydrodynamical explosion
is, under certain conditions, possible, according to simulations. However, if this mechanism fails,
an alternative mechanism might take place, which is caused by the roughly 3 × 1053 erg released
in the form of neutrinos during the first second of the collapse. In this so-called delayed explosion
scenario, the stalled shock can be revived by the neutrinos streaming from the core of the star.
Observing neutrinos from the next CCSN might resolve this controversy. In addition, the behaviour
of neutrinos in dense environments, like the newly formed proto-neutron star and its neutrinosphere,
can be studied [3].

KM3NeT is a research infrastructure housing next-generation neutrino telescopes, currently
under construction at the bottom of the Mediterranean Sea [4]. It will consist of two water
Cherenkov detectors designed for different physical purposes: ORCA (Oscillation Research with
Cosmics in the Abyss) and ARCA (Astroparticle Research with Cosmics in the Abyss). They will
be composed of one and two building blocks, respectively, where each building block will comprise
115 detection units (DUs). A detection unit is a vertical string-like structure holding 18 digital
optical modules (DOMs) [5]. With its denser DOM-array (9 m between DOMs and 20 m between
DUs for ORCA versus 36 m between DOMs and 90 m between DUs for ARCA), ORCA is designed
to detect atmospheric neutrinos in the 1 to 100 GeV energy range for the determination of the
neutrino mass ordering. The geometry of ARCA is optimised for the study of cosmic neutrinos in
the TeV-PeV energy range. CCSN neutrinos have a mean energy around only 10 to 20 MeV and,
therefore, cannot be tracked individually by the KM3NeT detector. However, it is possible to use
the particular structure of the DOMs to detect the arriving supernova neutrino burst.

2. Detection of CCSN neutrinos in KM3NeT

Each DOM in the KM3NeT detector is a transparent 17-inch diameter glass sphere containing
31 3-inch photomultiplier tubes (PMTs) [6], with an almost uniform angular coverage. These
PMTs detect the Cherenkov radiation induced by relativistic charged particles crossing the detector
volume. The two main sources of background are atmospheric muons and radioactive decays of
40K present in the seawater. The background from atmospheric muons can be reduced by removing
the DOMs associated with muon triggers. The expected number of background events in a building
block after this muon filtering is shown in figure 1 (left) as a function of multiplicity. Multiplicity
is defined as the number of PMTs hit in a coincidence occurring in a 10 ns window. Figure 1
(left) also shows the expected signal from three different supernova models. Thus, the detection of
CCSN neutrinos relies on the observation of a rate of coincidences in single DOMs in excess over
the expected background taking into account all the DOMs in the detector, i.e., ORCA and ARCA
together.

The multiplicity distribution is computed in [7] for a 500 ms window in order to cover a typical
accretion phase of a CCSN [2]. It becomes evident that for intermediate multiplicities a clear excess
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of signal events above the background will be present. For all possible multiplicity ranges and the
supernova models considered in figure 1, the maximal distance to the supernova for which a 5𝜎
discovery is possible, was calculated [7]. This analysis, together with considerations that ensure a
statistically significant analysis, yields for both detectors the 7−11 multiplicity range as the optimal
one.

Adopting the 7 − 11 multiplicity range for both detectors, a KM3NeT combined sensitivity is
calculated as a weighted linear combination of the ARCA and ORCA sensitivities [7]. The result,
as a function of the distance to the exploding star, is shown in figure 1 (right). Considering current
models of the distribution of CCSNe as a function of their distance to Earth and their progenitor
mass, this means that more than 95% of the Galactic CCSNe can be detected with KM3NeT. In
particular, for the case of the heaviest progenitor considered in this study, the sensitivity for a
discovery extends beyond the Large Magellanic Cloud.

3. Time profile of the neutrino light curve

In the event of a high-significance detection for a close-by or large-mass progenitor, the large
statistics collected at KM3NeT would make an in-depth study of the neutrino time profile possible.

3.1 Detection of the standing accretion shock instability

With the first three-dimensional simulations of CCSNe [8], it was revealed that small perturba-
tions can be developed in the accretion shock. These can result in large-scale periodic back and forth
sloshing motions, called the standing accretion shock instability (SASI). This phenomenon would
modulate the accretion flow to the neutron star and the associated neutrino emission. Furthermore,
it could favour the explosion mechanism [9]. Thus, observing the SASI in the neutrino light curve
of the next CCSN would help understand its role in the explosion process.

Figure 1: Left: Expected number of events in a building block as a function of multiplicity in a 500 ms
window. The blue markers show the values for the background expected at ORCA (light blue) and ARCA
(dark blue). The expected signal from three different supernova models (see legend) is represented with
coloured bars in orange tones. Right: KM3NeT detection sensitivity as a function of the distance to the
exploding star for the three models previously considered. Both figures are taken from Ref. [7].
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Figure 2 (left) shows the expected neutrino light curve for one of the progenitors studied in
Ref. [7]. Here, the expected background is added to the simulated neutrino signal expected for a
supernova emerging from a 20 M⊙ progenitor and located at 5 kpc from Earth. The background
due to coincidences caused by the radioactive elements in the water or in the material of the DOM
is ∼ 500 Hz per DOM. Furthermore, the rate of random coincidences is close to 225 Hz per DOM.
A spectral analysis using a fast Fourier transform is performed on the final curve [7]. The power
spectral densities obtained for three pseudo-experiments are shown in figure 2 (right). For these
particular conditions, a 3𝜎 sensitivity to the SASI-signature is reached [11].

3.2 Arrival time of the CCSN neutrino signal

Neutrinos from a CCSN will arrive up to several hours before the event becomes visible to
electromagnetic observatories. A precise computation of the arrival time of the signal by many
neutrino observatories, would allow for a localisation of the source via triangulation [10]. With this
information, other observatories could be oriented in this direction.

In Ref. [7], a method to extract the arrival time of the burst 𝑇0 from the observed time profile of
the signal is presented. First, a time range for the fit is chosen so as to include a background region
to ensure the stability of the fit. At the same time, the region beyond the accretion peak is avoided.
A first estimation of 𝑇0 is obtained by scanning the time interval, searching for a 2.5𝜎 excess above
the background. Then, an exponential fit is performed to the signal edge, using the time range and
starting value of 𝑇0 previously calculated. An example of this method is shown in figure 3 for the
scenario of a 20 M⊙ progenitor located at a distance of 5 kpc (see section 3.1). For this particular
case, an average time resolution of ∼ 3 ms is achieved.

Figure 2: Left: Expected neutrino light curve for a 20 M⊙ progenitor located at 5 kpc from Earth, including
background. Right: Power spectral densities obtained from three simulated light curves. One of them
corresponds to the light curve shown in the figure on the left. Both figures are taken from Ref. [7].
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4. Real-time Multi-Messenger Analysis Framework for KM3NeT

The real-time analysis system of KM3NeT integrates, since mid-2019, an analysis pipeline
to search for a CCSN signal based on the procedure described in section 2 [11]. A detection
significance of the combined ARCA and ORCA signals and the corresponding false alarm rate
(FAR) are computed to produce internal alerts (see figure 4, blue boxes). If the FAR is below one
per day or below one every eight days, an alert is sent to the Supernova Neutrino Early Warning
System (SNEWS, [12]) for testing or alerting purposes, respectively. With a latency of about 20 s,
KM3NeT’s current configuration (19 DUs in ARCA and 10 DUs in ORCA) is capable of informing
about a significant detection for a supernova happening within a radius of ∼ 10 kpc. The light curve
data together with the identified arrival time of the neutrino burst 𝑇0, as described in section 3.2,
can be delivered as well, which is crucial for the localisation of the source.

For the follow-up of external multi-messenger alerts, KM3NeT relies on its analysis strategy.
For this purpose, the output of the real-time analysis pipeline is stored. The follow-up is performed
to the stored data in a similar fashion as in the real-time analysis. This analysis has also been used
to search for neutrino counterparts in gravitational events sent by the LIGO-VIRGO Collaboration
during the O3 run [11]. In particular, a follow-up of the gravitational wave S200114f was performed,
but no signal was found and constraints on the presence of a CCSN were set.

5. Conclusions

The present KM3NeT CCSN analysis framework already allows for supernovae detection up
to a horizon reaching the Galactic Centre. In the case of a high-significance event, the time profile
of the light curve and the neutrino arrival time can also be estimated. A real-time multi-messenger
analysis framework has been established to share high-significance events with the multi-messenger
community. Moreover, external alerts received via dedicated channels can be followed up with a
search in the stored data, allowing for a fast determination of the significance or upper limits in the
absence of a signal.

Figure 3: Time profile of the signal in ARCA for a 20 M⊙ progenitor located at a distance of 5 kpc, together
with the fit used to extract the arrival time of the burst 𝑇0. This figure is taken from Ref. [7].
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Figure 4: Outline of the implementation of the KM3NeT real-time core-collapse supernova analysis frame-
work with neutrinos. This figure is from [13].
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