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1. Introduction

I briefly discuss two models that enhance the scalar sector of the Standard Model by additional
particle content, including dark matter candidates. These models lead to signatures with missing
energy. I present current bounds on these models as well as perspectives and rates at future lepton
colliders.

2. Inert Doublet Model

The Inert Doublet Model (IDM) [2-4] is a two Higgs Doublet Model (THDM) with a dis-
crete exact Z, symmetry containing a dark matter candidate. The model features 7 free parameters,
which we chose in the so-called physical basis [5]: v, My, My, Ma, Mg+, A3, A345, where the As
correspond to potential parameters. As two parameters (the vacuum expecation value (vev) v and
My, ~ 125GeV) are fixed by experimental measurements, we end up with a total number of 5
free parameters. Here, we consider the case where H is the dark matter candidate, which implies
Ma g+ > Mpy.

The model is subject to a large number of theoretical and experimental constraints [1, 5-9].
These lead to a large reduction of the allowed parameter space. As an example, the masses are
usually quite degenerate, as can be seen from figure 1'. We also consider the case when Mg <
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Figure 1: Masses are requested to be quite degenerate after all constraints have been taken into account.
Left: In the (M4, My+) plane (taken from [5]). Right: In the (Mg+ — My, M4 — My) plane (taken from
(8.

My, /2, where constraints from 2 — invisible start to play an important role and an interesting
interplay arises, between bounds from signal strength measurements, and bounds from dark matter
relic density, see figure 2. In [5], it was found that this in general leads to a lower bound of
My ~ 50GeV, with exceptions presented in [9]. The discovery potential of ILC and CLIC was
investigated in [11-16] for several benchmark points proposed in [8], for varying center-of-mass
energies from 250 GeV up to 3 TeV. We focus on AH and H* H™ production with A — Z H and
H* — W*H, with leptonic decays of the electroweak gauge bosons. Event generation was done
using WHizard 2.2.8 [17, 18], with an interface via SARAH [19] and SPheno 4.0.3 [20, 21] for
model implementation. For CLIC results energy spectra [22] were also taken into account.

!Note that BP11 from [8] is by now excluded from the newest direct detection constraints [10].



BSM scenarios with missing energy at future lepton colliders Tania Robens

0.1

excluded from XENON e
excluded from relic density
surviving points
exact relic density

0.05

Asss
S

-0.05 |

. .
30 40 50 60 70 80 90 100
My [GeV]

Figure 2: Interplay of signal strength and relic density constraints in the (Mpg, A345) plane. Using
XENONIT results, with golden points labelling those points that produce exact relic density (taken from
[6]). Note that all points displayed here also pass the new LUX-Zeppelin bounds [10].

The investigated final states were et e™ — u*u~ + F, ete” — u*e’ + E for HA and
H* H™ production, respectively. Results for the discovery reach of CLIC, including center-of-
mass energies of 1.5 TeV and 3 TeV, are shown in figure 3. In general, production cross sections
> 0.5fb and mass sums up to 1 TeV seem accessible, where the u* e* channel seems to provide
a larger discovery range.

3. THDMa

The THDMa is a type II two-Higgs-doublet model that is extended by an additional pseu-
doscalar a. In the gauge-eigenbasis, the additional scalar serves as a portal to the dark sector, with
a fermionic dark matter candidate, denoted by y. More details can e.g. be found in [23-29].

The model contains the following particles in the scalar and dark matter sector: h, H, H*,
a, A, y. It depends on 12 additional new physics parameters

Vv, Mp, My, Mg, MA, My=,M,; cos (B —a),tan B,sin6; y,,A3,dp,, Ap,,
where v and either mj, or mpy are fixed by current measurements in the electroweak sector.

I here report on results of a scan that allows all of the above novel parameters float in specific
predefined ranges [29]. Two examples for direct bounds in 2-dimensional planes are displayed in
figure 4. Note that for this proceeding, on contrast to the results presented in [1, 29], we have
now updated the value of By — u* u~ to the current PDG value [30], we have By — u"u~ =
(3.01 + 0.35) x 107°. Following the logic explained in [29], this leads to (B; — u*u~)3P"€"° ¢
[1.52:3.34] x 107%. Note that the AM; experimental value has also been updated [31] and now
reads AM; (ps_l) = 17.765 + 0.004 + 0.004. However, this basically leads to similar bounds as
the previous value [32], so we did not update the respective bounds.

If, for consistency, now taking again a 30~ allowed range for By — u* u~, the bounds from this
branching ratio and AM; basically overlapp. In turn, it means that now tan S values < 1 are still
allowed. The second plot displays the relic density as a function of the mass difference m, —2m,,.

I also present cross section values for production at e*e™ colliders for points that pass all
bounds considered in [29] at a 3 TeV collider in figure 5.
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Figure 3: Discovery prospects at CLIC for the IDM in pu* u~ + E (left) and p* e¥ + E (right) final states, as a
function of the respective production cross-sections (top) and mass sum of the produced particles (bottom).
Taken from [11].

4. Conclusion

I briefly presented two scenarios for models with dark matter candidates and their prospective
signatures and rates/ discovery ranges at future lepton colliders, with a focus on larger (O (TeV))
center-of-mass energies. For the IDM, a detailed study shows that many still viable parameter
points should be accessible, depending on the specifics of the particular benchmark points. For the
THDMa, regions in parameter space exist where 7 + F is the dominant production mode.
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