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1. Introduction

I briefly discuss two models that enhance the scalar sector of the Standard Model by additional
particle content, including dark matter candidates. These models lead to signatures with missing
energy. I present current bounds on these models as well as perspectives and rates at future lepton
colliders.

2. Inert Doublet Model

The Inert Doublet Model (IDM) [2–4] is a two Higgs Doublet Model (THDM) with a dis-
crete exact Z2 symmetry containing a dark matter candidate.The model features 7 free parameters,
which we chose in the so-called physical basis [5]: v,Mh ,MH ,MA,MH± , λ2, λ345, where the λs
correspond to potential parameters. As two parameters (the vacuum expecation value (vev) v and
Mh ∼ 125 GeV) are fixed by experimental measurements, we end up with a total number of 5
free parameters. Here, we consider the case where H is the dark matter candidate, which implies
MA, H± ≥ MH .

The model is subject to a large number of theoretical and experimental constraints [1, 5–9].
These lead to a large reduction of the allowed parameter space. As an example, the masses are
usually quite degenerate, as can be seen from figure 11. We also consider the case when MH ≤
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Figure 1: Masses are requested to be quite degenerate after all constraints have been taken into account.
Left: In the (MA, MH± ) plane (taken from [5]). Right: In the (MH± − MH , MA − MH ) plane (taken from
[8]).

Mh/2, where constraints from h → invisible start to play an important role and an interesting
interplay arises, between bounds from signal strength measurements, and bounds from dark matter
relic density, see figure 2. In [5], it was found that this in general leads to a lower bound of
MH ∼ 50 GeV, with exceptions presented in [9]. The discovery potential of ILC and CLIC was
investigated in [11–16] for several benchmark points proposed in [8], for varying center-of-mass
energies from 250 GeV up to 3 TeV. We focus on AH and H+H− production with A → Z H and
H± → W±H , with leptonic decays of the electroweak gauge bosons. Event generation was done
using WHizard 2.2.8 [17, 18], with an interface via SARAH [19] and SPheno 4.0.3 [20, 21] for
model implementation. For CLIC results energy spectra [22] were also taken into account.

1Note that BP11 from [8] is by now excluded from the newest direct detection constraints [10].
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Figure 2: Interplay of signal strength and relic density constraints in the (MH , λ345) plane. Using
XENON1T results, with golden points labelling those points that produce exact relic density (taken from
[6]). Note that all points displayed here also pass the new LUX-Zeppelin bounds [10].

The investigated final states were e+ e− → µ+µ− + /E, e+ e− → µ± e∓ + /E for H A and
H+ H− production, respectively. Results for the discovery reach of CLIC, including center-of-
mass energies of 1.5 TeV and 3 TeV, are shown in figure 3. In general, production cross sections
& 0.5 fb and mass sums up to 1 TeV seem accessible, where the µ± e∓ channel seems to provide
a larger discovery range.

3. THDMa

The THDMa is a type II two-Higgs-doublet model that is extended by an additional pseu-
doscalar a. In the gauge-eigenbasis, the additional scalar serves as a portal to the dark sector, with
a fermionic dark matter candidate, denoted by χ. More details can e.g. be found in [23–29].

The model contains the following particles in the scalar and dark matter sector: h, H, H±,
a, A, χ. It depends on 12 additional new physics parameters

v, mh , mH ,ma ,mA, mH± ,mχ ; cos (β − α) , tan β,sin θ; yχ , λ3, λP1 , λP2 ,

where v and either mh or mH are fixed by current measurements in the electroweak sector.
I here report on results of a scan that allows all of the above novel parameters float in specific

predefined ranges [29]. Two examples for direct bounds in 2-dimensional planes are displayed in
figure 4. Note that for this proceeding, on contrast to the results presented in [1, 29], we have
now updated the value of Bs → µ+ µ− to the current PDG value [30], we have Bs → µ+µ− =

(3.01 ± 0.35) × 10−9. Following the logic explained in [29], this leads to
(
Bs → µ+µ−

)Spheno
∈

[1.52; 3.34] × 10−9. Note that the ∆Ms experimental value has also been updated [31] and now
reads ∆Ms

(
ps−1
)

= 17.765 ± 0.004 ± 0.004. However, this basically leads to similar bounds as
the previous value [32], so we did not update the respective bounds.

If, for consistency, now taking again a 3σ allowed range for Bs → µ+µ−, the bounds from this
branching ratio and ∆Ms basically overlapp. In turn, it means that now tan β values . 1 are still
allowed. The second plot displays the relic density as a function of the mass difference ma − 2 mχ .

I also present cross section values for production at e+e− colliders for points that pass all
bounds considered in [29] at a 3 TeV collider in figure 5.
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Figure 3: Discovery prospects at CLIC for the IDM in µ+µ−+ /E (left) and µ± e∓+ /E (right) final states, as a
function of the respective production cross-sections (top) and mass sum of the produced particles (bottom).
Taken from [11].

4. Conclusion

I briefly presented two scenarios for models with dark matter candidates and their prospective
signatures and rates/ discovery ranges at future lepton colliders, with a focus on larger (O (TeV))
center-of-mass energies. For the IDM, a detailed study shows that many still viable parameter
points should be accessible, depending on the specifics of the particular benchmark points. For the
THDMa, regions in parameter space exist where tt̄ + /E is the dominant production mode.
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